Astrobiologi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Loncat ke navigasi Loncat ke pencarian

Astrobiologi (kadang disebut juga eksobiologi, eksopaleontologi, bioastronomi, dan xenobiologi) adalah kajian tentang asal, evolusi, penyebaran, dan masa depan kehidupan di alam semesta. Bidang ilmu antardisiplin ini meliputi pencarian lingkungan laik huni baik di dalam maupun di luar Tata Surya, pencarian bukti kimia prebiotik, kehidupan di Mars dan benda lain di Tata Surya, penelitian laboratorium dan lapangan perihal asal dan evolusi awal kehidupan di Bumi, serta kajian potensi makhluk hidup untuk beradaptasi di Bumi dan di luar angkasa.[1]

Astrobiologi memanfaatkan biologi molekuler, biofisika, biokimia, kimia, astronomi, kosmologi fisik, eksoplanetologi dan geologi untuk menyelidiki kemungkinan kehidupan di dunia lain dan membantu mengenali biosfer yang mungkin berbeda dari yang ada di Bumi.[2] Asal usul dan evolusi awal kehidupan adalah bagian yang tidak terpisahkan dari disiplin ilmu astrobiologi.[3] Astrobiologi berkaitan dengan interpretasi data ilmiah yang ada. Astrobiologi menyangkut dirinya sendiri terutama dengan hipotesis yang sesuai dengan teori-teori ilmiah yang ada.

Bidang antardisiplin ini mencakup penelitian tentang asal-usul sistem planet, asal-usul senyawa organik di ruang angkasa, interaksi batuan-air-karbon, abiogenesis di Bumi, kelayakhunaan planet, penelitian tentang biosignatures untuk deteksi kehidupan, dan studi tentang potensi kehidupan untuk beradaptasi dengan tantangan di Bumi dan di luar angkasa.[4][5][6]

Biokimia mungkin telah dimulai tak lama setelah Big Bang, 13,8 miliar tahun yang lalu, selama zaman yang layak huni ketika semesta baru berusia 10-17 juta tahun.[7][8] Menurut hipotesis panspermia, kehidupan mikroskopis — didistribusikan oleh meteoroid, asteroid, dan benda kecil Tata Surya lainnya — mungkin ada di seluruh alam semesta.[9][10] Menurut penelitian yang diterbitkan pada Agustus 2015, galaksi yang sangat besar mungkin lebih menguntungkan bagi penciptaan dan pengembangan planet yang dapat dihuni daripada galaksi yang lebih kecil seperti Bima Sakti.[11] Meskipun demikian, Bumi adalah satu-satunya tempat di alam semesta yang diketahui manusia sebagai tempat kehidupan.[12][13] Perkiraan zona layak huni di sekitar bintang lain,[14][15] kadang-kadang disebut sebagai "zona Goldilocks"[16][17] bersamaan dengan penemuan ratusan planet ekstrasurya dan wawasan baru mengenai habitat ekstrem. di sini di Bumi, sarankan bahwa mungkin ada lebih banyak tempat yang bisa dihuni di alam semesta daripada yang diperkirakan hingga saat ini.[18][19][20]

Studi saat ini di planet Mars oleh wahana penjelajah Curiosity dan Opportunity sedang dilakukan untuk mencari bukti kehidupan kuno serta dataran yang terkait dengan sungai atau danau purba yang mungkin telah dihuni.[21][22][23][24] Pencarian untuk bukti kelayakhunian, tafonomi (terkait dengan fosil), dan molekul organik di planet Mars sekarang menjadi tujuan utama NASA dan ESA.

Bahkan jika kehidupan di luar bumi tidak pernah ditemukan, sifat astrobiologi antardisiplin, dan perspektif kosmik dan evolusi yang ditimbulkan olehnya, masih dapat menghasilkan berbagai manfaat di Bumi.[25]

Ikhtisar[sunting | sunting sumber]

Tidak diketahui apakah kehidupan di tempat lain di alam semesta akan memanfaatkan struktur sel seperti yang ditemukan di Bumi.[26] (Kloroplas dalam sel tanaman ditunjukkan di sini.)

Istilah ini pertama kali diusulkan oleh astronom Rusia (Soviet) Gavriil Tikhov pada tahun 1953.[27] Astrobiologi secara etimologis berasal dari bahasa Yunani ἄστρον , astron, "rasi bintang, bintang"; βίος , bios, "kehidupan"; dan -λογία, -logia, belajar. Sinonim dari astrobiologi beragam; Namun, sinonim terstruktur dalam kaitannya dengan ilmu paling penting yang tersirat dalam perkembangannya: astronomi dan biologi. Sinonim yang dekat adalah exobiologi dari bahasa Yunani Έξω, "eksternal"; Βίος, bios, "hidup"; dan λογία, -logia, belajar. Istilah eksobiologi diciptakan oleh ahli biologi molekuler dan pemenang Hadiah Nobel Joshua Lederberg.[28] Eksobiologi dianggap memiliki ruang lingkup yang terbatas terbatas pada pencarian kehidupan di luar Bumi, sedangkan bidang subjek astrobiologi lebih luas dan menyelidiki hubungan antara kehidupan dan alam semesta, yang mencakup pencarian kehidupan di luar bumi, tetapi juga mencakup penelitian kehidupan di Bumi, asal-usulnya, evolusi dan batasnya.

Istilah lain yang digunakan di masa lalu adalah xenobiologi, ("biologi orang asing") kata yang digunakan pada tahun 1954 oleh penulis fiksi ilmiah Robert Heinlein dalam karyanya The Star Beast.[29] Istilah xenobiologi sekarang digunakan dalam pengertian yang lebih terspesialisasi, yang berarti "biologi berdasarkan kimia asing", baik yang berasal dari luar bumi atau terestrial (mungkin sintetis). Karena analog kimia alternatif dengan beberapa proses kehidupan telah dibuat di laboratorium, xenobiologi sekarang dianggap sebagai subjek yang masih ada.[30]

Sementara astrobiologi adalah bidang yang muncul dan berkembang, pertanyaan apakah kehidupan ada di tempat lain di alam semesta adalah hipotesis yang dapat diverifikasi dan dengan demikian merupakan jalur penyelidikan ilmiah yang valid.[31][32] Meskipun pernah dianggap di luar arus utama penyelidikan ilmiah, astrobiologi telah menjadi bidang studi formal. Ilmuwan planet David Grinspoon menyebut astrobiologi sebagai bidang filsafat alam, yang mendasari spekulasi yang tidak diketahui, dalam teori ilmiah yang dikenal.[33] Ketertarikan NASA pada eksobiologi pertama kali dimulai dengan pengembangan Program Luar Angkasa AS. Pada tahun 1959, NASA mendanai proyek eksobiologi pertamanya, dan pada tahun 1960, NASA mendirikan Program Eksobiologi, yang sekarang merupakan salah satu dari empat elemen utama Program Astrobiology NASA saat ini.[34][35] Pada tahun 1971, NASA mendanai pencarian intelijen ekstraterestrial (SETI) untuk mencari frekuensi radio dari spektrum elektromagnetik untuk komunikasi antarbintang yang ditransmisikan oleh kehidupan luar angkasa di luar Tata Surya. Misi Viking NASA ke Mars, diluncurkan pada tahun 1976, termasuk tiga percobaan biologi yang dirancang untuk mencari metabolisme kehidupan sekarang di Mars.

Kemajuan di bidang astrobiologi, astronomi pengamatan, dan penemuan varietas besar ekstrofil dengan kemampuan luar biasa untuk berkembang di lingkungan paling keras di Bumi telah menimbulkan spekulasi bahwa kehidupan mungkin berkembang di banyak benda luar angkasa di alam semesta.[36] Fokus khusus penelitian astrobiologi saat ini adalah pencarian kehidupan di Mars karena kedekatan planet ini dengan Bumi dan sejarah geologis. Ada semakin banyak bukti yang menunjukkan bahwa Mars sebelumnya memiliki sejumlah besar air di permukaannya,[37][38] air dianggap sebagai pendahulu penting bagi pengembangan kehidupan berbasis karbon.[39]

Misi yang dirancang khusus untuk mencari kehidupan saat ini di Mars adalah program Viking dan penyelidikan Beagle 2. Hasil Viking tidak meyakinkan[40] dan Beagle 2 gagal beberapa menit setelah mendarat.[41] Misi masa depan dengan peran astrobiologi yang kuat adalah Jupiter Icy Moons Orbiter yang dirancang untuk mempelajari bulan-bulan beku Jupiter — beberapa di antaranya mungkin memiliki air cair — seandainya misi itu tidak dibatalkan. Pada akhir 2008, pendarat Phoenix menyelidiki lingkungan untuk habitat mikroba masa lalu dan masa kini di Mars, dan meneliti sejarah air di sana.

Peta jalan astrobiologi Badan Antariksa Eropa dari 2016, mengidentifikasi lima topik penelitian utama dan menetapkan beberapa tujuan ilmiah utama untuk setiap topik. Lima topik penelitian tersebut adalah:[42] 1) Asal dan evolusi sistem planet 2) Asal-usul senyawa organik di ruang angkasa 3) Interaksi batuan-air-karbon, sintesis organik di Bumi, dan langkah-langkah menuju kehidupan 4) Kehidupan dan kelayakhunian 5) Tanda biologis untuk memfasilitasi pendeteksian kehidupan.

Pada November 2011, NASA meluncurkan misi Laboratorium Sains Mars yang membawa penjelajah Curiosity, yang mendarat di Mars di Kawah Gale pada Agustus 2012.[43][44][45] Penjelajah Curiosity saat ini sedang menyelidiki lingkungan untuk kehidupan mikroba masa lalu dan masa kini di planet Mars. Pada tanggal 9 Desember 2013, NASA melaporkan bahwa, berdasarkan bukti dari Curiosity yang mempelajari Aeolis Palus, Kawah Gale berisi sebuah danau air tawar kuno yang bisa menjadi lingkungan yang ramah untuk kehidupan mikroba.[46]

Badan Antariksa Eropa saat ini bekerja sama dengan Badan Antariksa Federal Rusia (Roscosmos) dan mengembangkan penjelajah astrobiologi ExoMars, yang akan diluncurkan pada Juli 2020.[47] Sementara itu, NASA sedang mengembangkan penjelajah astrobiologi Mars 2020 dan penyimpan sampel untuk dikirim kembali ke Bumi nanti.

Metodologi[sunting | sunting sumber]

Kelayakhunian planet[sunting | sunting sumber]

Ketika mencari kehidupan di planet lain seperti Bumi, beberapa asumsi penyederhanaan berguna untuk mengurangi ukuran tugas astrobiologis. Salah satunya adalah asumsi bahwa sebagian besar bentuk kehidupan di galaksi kita didasarkan pada kimia karbon, seperti halnya semua bentuk kehidupan di Bumi.[48] Karbon terkenal dengan variasi molekul yang luar biasa luas yang dapat dibentuk di sekitarnya. Karbon adalah unsur paling berlimpah keempat di alam semesta dan energi yang dibutuhkan untuk membuat atau memutus ikatan berada tepat pada tingkat yang sesuai untuk membangun molekul yang tidak hanya stabil, tetapi juga reaktif. Fakta bahwa atom karbon mudah terikat dengan atom karbon lain memungkinkan untuk pembentukan molekul yang sangat panjang dan kompleks.

Kehadiran air cair adalah persyaratan yang diasumsikan, karena itu merupakan molekul umum dan menyediakan lingkungan yang sangat baik untuk pembentukan molekul berbasis karbon yang rumit yang pada akhirnya dapat mengarah pada munculnya kehidupan.[49] Beberapa peneliti menempatkan lingkungan campuran amonia-air sebagai pelarut yang mungkin untuk berbagai jenis biokimia hipotetis lainnya.[50]

Asumsi ketiga adalah fokus pada planet yang mengorbit bintang seperti Matahari untuk meningkatkan kemungkinan kelayakhunaan planet.[51] Bintang yang sangat besar memiliki masa hidup yang relatif singkat, yang berarti bahwa kehidupan mungkin tidak memiliki waktu untuk muncul di planet yang mengorbitnya. Bintang yang sangat kecil memberikan panas dan kehangatan yang sangat kecil sehingga hanya planet dengan orbit yang sangat dekat di sekitar mereka yang tidak akan membeku dan dalam orbit yang begitu dekat, planet-planet ini akan "terkunci" pada bintang tersebut.[52] Masa hidup katai merah yang sangat panjang dapat memungkinkan pengembangan lingkungan yang layak huni di planet dengan atmosfer tebal. Ini penting, karena katai merah sangat umum. (Lihat Kelayakhunian sistem katai merah).

Karena Bumi adalah satu-satunya planet yang diketahui memiliki kehidupan, tidak ada cara yang jelas untuk mengetahui apakah ada asumsi penyederhanaan ini benar atau salah.

Upaya komunikasi[sunting | sunting sumber]

Ilustrasi pada plakat Pioneer

Penelitian tentang komunikasi dengan kecerdasan ekstraterestrial (CETI) berfokus pada menyusun dan menguraikan pesan yang secara teoritis dapat dipahami oleh peradaban teknologi lain. Upaya komunikasi oleh manusia termasuk menyiarkan bahasa matematika, sistem bergambar seperti pesan Arecibo dan pendekatan komputasi untuk mendeteksi dan menguraikan komunikasi bahasa 'alami'. Program SETI, misalnya, menggunakan teleskop radio dan teleskop optik untuk mencari sinyal yang disengaja dari kecerdasan ekstraterestrial.

Sementara beberapa ilmuwan terkenal seperti Carl Sagan telah menganjurkan pengiriman pesan ke luar angkasa,[53][54] ilmuwan Stephen Hawking memperingatkannya, berpendapat bahwa alien mungkin akan menyerang Bumi hanya untuk sumber dayanya dan kemudian pergi.[55]

Elemen astrobiologi[sunting | sunting sumber]

Astronomi[sunting | sunting sumber]

Misi Kepler NASA, diluncurkan pada Maret 2009, bertujuan mencari planet ekstrasurya.

Sebagian besar penelitian astrobiologi yang berhubungan dengan astronomi termasuk dalam kategori deteksi planet luar tata surya (eksoplanet), hipotesisnya adalah bahwa jika kehidupan muncul di Bumi, maka ia juga dapat muncul di planet lain dengan karakteristik serupa. Untuk itu, sejumlah instrumen yang dirancang untuk mendeteksi eksoplanet seukuran Bumi telah dipertimbangkan, terutama NASA Terrestrial Planet Finder (TPF) dan program Darwin ESA, yang keduanya telah dibatalkan. NASA meluncurkan misi Kepler pada Maret 2009, dan Badan Antariksa Prancis meluncurkan misi luar angkasa COROT pada tahun 2006.[56][57] Ada juga beberapa upaya berbasis darat yang tidak begitu ambisius sedang berlangsung.

Tujuan dari misi ini bukan hanya untuk mendeteksi planet seukuran Bumi, tetapi juga untuk secara langsung mendeteksi cahaya dari planet ini sehingga dapat dipelajari secara spektroskopi. Dengan memeriksa spektrum planet, akan mungkin untuk menentukan komposisi dasar atmosfer dan/atau permukaan planet ekstrasurya. Dengan pengetahuan ini, dimungkinkan untuk menilai kemungkinan kehidupan yang ditemukan di planet itu. Kelompok riset NASA, Virtual Planet Laboratory,[58] menggunakan pemodelan komputer untuk menghasilkan berbagai planet virtual untuk melihat seperti apa bentuknya jika dilihat oleh TPF atau Darwin. Diharapkan bahwa begitu misi-misi ini online, spektra mereka dapat diperiksa silang dengan spektrum planet virtual ini untuk fitur-fitur yang mungkin mengindikasikan keberadaan kehidupan.

Perkiraan untuk jumlah planet dengan kehidupan ekstraterestrial komunikatif yang cerdas dapat diperoleh dari persamaan Drake, pada dasarnya sebuah persamaan yang mengungkapkan kemungkinan kehidupan cerdas sebagai produk dari faktor-faktor seperti pecahan planet yang mungkin dapat dihuni dan sebagian kecil planet di mana kehidupan mungkin muncul:[59]

Dengan:

  • N = Jumlah peradaban komunikatif
  • R * = Laju pembentukan bintang yang cocok (bintang seperti Matahari)
  • f p = Bilangan pecahan bintang-bintang yang dikelilingi planet (bukti saat ini menunjukkan bahwa sistem planet mungkin merupakan kewajaran untuk bintang seperti Matahari)
  • n e = Jumlah planet seukuran Bumi per sistem planet
  • f l = Bilangan pecahan dari planet seukuran Bumi yang mengalami perkembangan kehidupan
  • f i = Bilangan pecahan dari situs kehidupan yang mengalami perkembangan kecerdasan
  • f c = Bilangan pecahan planet komunikatif (planet dengan perkembangan teknologi komunikasi elektromagnetik)
  • L = "Panjang hidup" dari peradaban yang mampu berkomunikasi

Namun, sementara alasan di balik persamaan tersebut cukup meyakinkan, tidak mungkin bahwa persamaan itu akan memiliki batas kesalahan yang wajar dalam waktu dekat. Masalah dengan rumus itu adalah bahwa rumus itu tidak dapat digunakan untuk menghasilkan atau mendukung hipotesis karena mengandung faktor-faktor yang tidak pernah dapat diverifikasi. Istilah pertama, R*, jumlah bintang, umumnya dibatasi dalam skala beberapa tingkat besaran (10n). Istilah kedua dan ketiga, fp, bintang dengan planet-planet dan fe, planet dengan kondisi layak huni, sedang dievaluasi untuk sistem di sekitar sistem bintang-bintang tersebut. Drake awalnya merumuskan persamaan hanya sebagai agenda diskusi di konferensi Bank Hijau,[60] tetapi beberapa penerapan dari formula itu telah diambil secara harfiah dan terkait dengan argumen ilmiah sederhana atau pseudosains.[61] Topik terkait lainnya adalah paradoks Fermi, yang mengusulkan argumen bahwa jika kehidupan cerdas adalah sebuah kondisi umum di alam semesta, maka seharusnya ada tanda-tanda yang jelas dari kehidupan-kehidupan cerdas tersebut.

Bidang penelitian aktif lain dalam astrobiologi adalah pembentukan sistem planet. Telah dikemukakan bahwa kekhasan Tata Surya (misalnya, keberadaan Jupiter sebagai perisai pelindung)[62] mungkin telah sangat meningkatkan kemungkinan kehidupan cerdas yang muncul di planet kita.[63][64]

Biologi[sunting | sunting sumber]

Ventilasi hidrotermal mampu mendukung bakteri ekstrofil di Bumi dan juga dapat mendukung kehidupan di bagian lain alam semesta.

Biologi tidak dapat menyatakan bahwa suatu proses atau fenomena, dengan menjadi mungkin secara matematis, harus ada secara paksa pada objek luar angkasa. Ahli biologi menentukan apa yang spekulatif dan apa yang tidak.[65] Penemuan ekstrofil, organisme yang mampu bertahan hidup di lingkungan ekstrem, menjadi elemen penelitian inti bagi para ahli astrobiologi, karena organisme seperti itu penting untuk memahami empat batas kehidupan dalam cakupan planet: potensi panspermia, kontaminasi ke depan karena usaha eksplorasi manusia, kolonisasi planet oleh manusia, dan eksplorasi kehidupan ekstraterestrial yang punah dan masih ada.[66]

Sampai tahun 1970-an, kehidupan dianggap sepenuhnya bergantung pada energi dari Matahari. Tumbuhan di permukaan bumi menangkap energi dari sinar matahari untuk memfotosintesis gula dari karbon dioksida dan air, melepaskan oksigen dalam proses yang kemudian dikonsumsi oleh organisme yang merespons oksigen, meneruskan energi mereka ke rantai makanan. Bahkan kehidupan di kedalaman lautan, di mana sinar matahari tidak dapat mencapai, dianggap memperoleh makanannya baik dari mengkonsumsi detritus organik yang dihujani dari permukaan air atau dari memakan hewan yang melakukannya.[67] Kemampuan sebuah planet untuk mendukung kehidupan dianggap bergantung pada aksesnya terhadap sinar matahari. Namun, pada tahun 1977, selama penyelaman penjelajahan ke Galapagos Rift di penjelajahan bawah laut Alvin, para ilmuwan menemukan koloni cacing tabung raksasa, kerang, krustasea, kerang, dan berbagai makhluk lain yang berkerumun di sekitar fitur vulkanik bawah laut yang dikenal sebagai ventilasi hidrotermal.[67] Makhluk-makhluk ini berkembang meskipun tidak memiliki akses ke sinar matahari, dan segera ditemukan bahwa mereka terdiri dari ekosistem yang sepenuhnya independen. Meskipun sebagian besar bentuk kehidupan multiseluler ini membutuhkan oksigen terlarut (diproduksi oleh fotosintesis oksigen) untuk respirasi seluler aerobik mereka dan dengan demikian tidak sepenuhnya terlepas dari sinar matahari sendiri, dasar dari rantai makanan mereka adalah bentuk bakteri yang memperoleh energinya dari oksidasi reaktif bahan kimia, seperti hidrogen atau hidrogen sulfida, yang keluar dari bagian dalam bumi. Bentuk kehidupan lain yang sepenuhnya dipisahkan dari energi dari sinar matahari adalah bakteri sulfur hijau yang menangkap cahaya panas bumi untuk fotosintesis anoksiogenik atau bakteri yang menjalankan kemolitoautotrofi berdasarkan peluruhan radioaktif uranium.[68] Kemosintesis ini merevolusi studi biologi dan astrobiologi dengan mengungkapkan bahwa kehidupan tidak harus bergantung pada matahari, hanya membutuhkan air dan gradien energi untuk tetap ada.

Ahli biologi telah menemukan ekstrofil yang tumbuh subur di es, air mendidih, asam, alkali, inti air reaktor nuklir, kristal garam, limbah beracun dan dalam berbagai habitat ekstrem lainnya yang sebelumnya dianggap tidak ramah untuk kehidupan.[69][70] Ini membuka jalan baru dalam astrobiologi dengan memperluas secara besar-besaran jumlah kemungkinan habitat luar angkasa. Pencirian organisme ini, lingkungannya dan jalur evolusinya, dianggap sebagai komponen penting untuk memahami bagaimana kehidupan dapat berevolusi di tempat lain di alam semesta. Sebagai contoh, beberapa organisme yang mampu menahan paparan pada ruang hampa dan radiasi ruang luar termasuk jamur liken Rhizocarpon geographicum dan Xanthoria elegans,[71] bakteri Bacillus safensis,[72] Deinococcus radiodurans,[72] Bacillus subtilis,[72] ragi Saccharomyces cerevisiae,[72] biji dari Arabidopsis thaliana (selada air kuping tikus),[72] serta hewan invertebrata Tardigrada.[72] Sementara tardigrada tidak dianggap sebagai benar-benar ekstrofil, mereka dianggap sebagai mikroorganisme ekstrotoleran yang telah berkontribusi pada bidang astrobiologi. Toleransi radiasi ekstrem dan keberadaan protein perlindungan DNA dapat memberikan jawaban apakah kehidupan dapat bertahan ketika berada jauh dari perlindungan atmosfer bumi.[73]

Bulan Jupiter, Europa,[74][75][76][77][78][79] dan bulan Saturnus, Enceladus,[80][81] sekarang dianggap sebagai lokasi yang paling mungkin untuk kehidupan ekstraterestrial yang masih ada di Tata Surya karena samudera air bawah permukaan yang dimiliki keduanya, di mana pemanasan radiogenik dan pasang surut memungkinkan air dalam wujud cair untuk ada.[82]

Asal usul kehidupan, yang dikenal sebagai abiogenesis, berbeda dari evolusi kehidupan, adalah bidang penelitian lain yang sedang berlangsung. Oparin dan Haldane mendalilkan bahwa kondisi di Bumi awal kondusif untuk pembentukan senyawa organik dari unsur anorganik dan dengan demikian untuk pembentukan banyak bahan kimia yang umum untuk semua bentuk kehidupan yang kita lihat sekarang. Studi tentang proses ini, yang dikenal sebagai kimia prebiotik, telah membuat beberapa kemajuan, tetapi masih belum jelas apakah kehidupan dapat terbentuk dengan cara seperti itu di Bumi. Hipotesis alternatif panspermia adalah bahwa unsur-unsur kehidupan pertama mungkin telah terbentuk di planet lain dengan kondisi yang lebih menguntungkan (atau bahkan di ruang antarbintang, asteroid, dll.) Dan kemudian telah dibawa ke Bumi - hipotesis panspermia.

Lihat pula[sunting | sunting sumber]

Referensi[sunting | sunting sumber]

  1. ^ "About Astrobiology". NASA Astrobiology Institute. NASA. Januari 21, 2008. Diakses tanggal 2008-10-20. 
  2. ^ Ward, P. D.; Brownlee, D. (2004). The life and death of planet Earth. New York: Owl Books. ISBN 978-0-8050-7512-0. 
  3. ^ "Origins of Life and Evolution of Biospheres". Journal: Origins of Life and Evolution of Biospheres. Diakses tanggal 6 April 2015. 
  4. ^ "Release of the First Roadmap for European Astrobiology". European Science Foundation. Astrobiology Web. 29 Maret 2016. Diakses tanggal 2 April 2016. 
  5. ^ Corum, Jonathan (18 Desember 2015). "Mapping Saturn's Moons". The New York Times. Diakses tanggal 18 Desember 2015. 
  6. ^ Cockell, Charles S. (4 Oktober 2012). "How the search for aliens can help sustain life on Earth". CNN News. Diakses tanggal 8 Oktober 2012. 
  7. ^ Loeb, Abraham (Oktober 2014). "The Habitable Epoch of the Early Universe". International Journal of Astrobiology. 13 (4): 337–339. arXiv:1312.0613alt=Dapat diakses gratis. Bibcode:2014IJAsB..13..337L. doi:10.1017/S1473550414000196. 
  8. ^ Dreifus, Claudia (2 Desember 2014). "Much-Discussed Views That Go Way Back – Avi Loeb Ponders the Early Universe, Nature and Life". The New York Times. Diakses tanggal 3 Desember 2014. 
  9. ^ Rampelotto, P.H. (2010). "Panspermia: A Promising Field of Research" (PDF). Astrobiology Science Conference. Diakses tanggal 3 Desember 2014. 
  10. ^ Reuell, Peter (2019-07-08). "Harvard study suggests asteroids might play key role in spreading life". Harvard Gazette (dalam bahasa Inggris). Diakses tanggal 2019-09-29. 
  11. ^ Choi, Charles Q. (21 Agustus 2015). "Giant Galaxies Mei Be Better Cradles for Habitable Planets". Space.com. Diakses tanggal 24 Agustus 2015. 
  12. ^ Graham, Robert W. (Februari 1990). "NASA Technical Memorandum 102363 – Extraterrestrial Life in the Universe" (PDF). NASA. Diakses tanggal 7 Juli 2014. 
  13. ^ Altermann, Wladyslaw (2008). "From Fossils to Astrobiology – A Roadmap to Fata Morgana?". Dalam Seckbach, Joseph; Walsh, Maud. From Fossils to Astrobiology: Records of Life on Earth and the Search for Extraterrestrial Biosignatures. 12. hlm. xvii. ISBN 978-1-4020-8836-0. 
  14. ^ Horneck, Gerda; Petra Rettberg (2007). Complete Course in Astrobiology. Wiley-VCH. ISBN 978-3-527-40660-9. 
  15. ^ Davies, Paul (18 November 2013). "Are We Alone in the Universe?". The New York Times. Diakses tanggal 20 November 2013. 
  16. ^ "BBC Solar System - Earth orbits in the Goldilocks zone". Diarsipkan dari versi asli tanggal 28 Juli 2018. Diakses tanggal 2018-03-27. 
  17. ^ Gary, Stuart (22 Februari 2016). "What is the Goldilocks Zone and why does it matter in the search for ET?". ABC News. Diakses tanggal 2018-03-27. 
  18. ^ Overbye, Dennis (4 November 2013). "Far-Off Planets Like the Earth Dot the Galaxy". The New York Times. Diakses tanggal 5 November 2013. 
  19. ^ Petigura, Eric A.; Howard, Andrew W.; Marcy, Geoffrey W. (31 Oktober 2013). "Prevalence of Earth-size planets orbiting Sun-like stars". Proceedings of the National Academy of Sciences of the United States of America. 110 (48): 19273–19278. arXiv:1311.6806alt=Dapat diakses gratis. Bibcode:2013PNAS..11019273P. doi:10.1073/pnas.1319909110. PMC 3845182alt=Dapat diakses gratis. PMID 24191033. Diakses tanggal 5 November 2013. 
  20. ^ Khan, Amina (4 November 2013). "Milky Way may host billions of Earth-size planets". Los Angeles Times. Diakses tanggal 5 November 2013. 
  21. ^ Grotzinger, John P. (24 Januari 2014). "Introduction to Special Issue – Habitability, Taphonomy, and the Search for Organic Carbon on Mars". Science. 343 (6169): 386–387. Bibcode:2014Sci...343..386G. doi:10.1126/science.1249944. PMID 24458635. 
  22. ^ Various (24 Januari 2014). "Exploring Martian Habitability – Table of Contents". Science. 343: 345–452. Diakses tanggal 24 Januari 2014. 
  23. ^ Various (24 Januari 2014). "Special Collection Curiosity – Exploring Martian Habitability". Science. Diakses tanggal 24 Januari 2014. 
  24. ^ Grotzinger, J.P.; et al. (24 Januari 2014). "A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars". Science. 343 (6169): 1242777. Bibcode:2014Sci...343A.386G. doi:10.1126/science.1242777. PMID 24324272. 
  25. ^ Crawford, I. A. (2018). "Widening perspectives: The intellectual and social benefits of astrobiology (regardless of whether extraterrestrial life is discovered or not)". International Journal of Astrobiology. 17 (1): 57–60. arXiv:1703.06239alt=Dapat diakses gratis. Bibcode:2018IJAsB..17...57C. doi:10.1017/S1473550417000088. </
  26. ^ Gutro, Robert (4 November 2007). "NASA Predicts Non-Green Plants on Other Planets". Goddard Space Flight Center. Diarsipkan dari versi asli tanggal 6 Oktober 2008. Diakses tanggal 20 Oktober 2008. 
  27. ^ Cockell, Charles S. (2001). "'Astrobiology' and the ethics of new science". Interdisciplinary Science Reviews. 26 (2): 90–96. doi:10.1179/0308018012772533. 
  28. ^ Launching a New Science: Exobiology and the Exploration of Space The National Library of Medicine.
  29. ^ Heinlein R & Harold W (21 Juli 1961). "Xenobiology". Science. 134 (3473): 223–225. Bibcode:1961Sci...134..223H. doi:10.1126/science.134.3473.223. JSTOR 1708323. PMID 17818726. 
  30. ^ Markus Schmidt (9 Maret 2010). "Xenobiology: A new form of life as the ultimate biosafety tool". BioEssays. 32 (4): 322–331. doi:10.1002/bies.200900147. PMC 2909387alt=Dapat diakses gratis. PMID 20217844. 
  31. ^ Livio, Mario (15 Februari 2017). "Winston Churchill's essay on alien life found". Nature. 542 (7641): 289–291. Bibcode:2017Natur.542..289L. doi:10.1038/542289a. PMID 28202987. 
  32. ^ De Freytas-Tamura, Kimiko (15 Februari 2017). "Winston Churchill Wrote of Alien Life in a Lost Essay". The New York Times. Diakses tanggal 18 Februari 2017. 
  33. ^ Grinspoon 2004
  34. ^ "About Astrobiology". NASA Astrobiology Institute. NASA. 21 Januari 2008. Diarsipkan dari versi asli tanggal 11 Oktober 2008. Diakses tanggal 20 Oktober 2008. 
  35. ^ Steven J. Dick & James E. Strick (2004). The Living Universe: NASA and the Development of Astrobiology. New Brunswick, NJ: Rutgers University Press. 
  36. ^ Reuell, Peter (2019-07-08). "Harvard study suggests asteroids might play key role in spreading life". Harvard Gazette (dalam bahasa Inggris). Diakses tanggal 2019-09-29. 
  37. ^ Parker, T.; Clifford, S. M.; Banerdt, W. B. (2000). "Argyre Planitia and the Mars Global Hydrologic Cycle" (PDF). Lunar and Planetary Science. XXXI: 2033. Bibcode:2000LPI....31.2033P. 
  38. ^ Heisinger, H.; Head, J. (2002). "Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history". Planet. Space Sci. 50 (10–11): 939–981. Bibcode:2002P&SS...50..939H. doi:10.1016/S0032-0633(02)00054-5. 
  39. ^ Tyson, Peter (4 Januari 2004). "Life's Little Essential". NOVA. PBS. 
  40. ^ Klein HP & Levin GV (1 Oktober 1976). "The Viking Biological Investigation: Preliminary Results". Science. 194 (4260): 99–105. Bibcode:1976Sci...194...99K. doi:10.1126/science.194.4260.99. PMID 17793090. 
  41. ^ Amos, Jonathan (16 Januari 2015). "Lost Beagle2 probe found 'intact' on Mars". BBC. Diakses tanggal 16 Januari 2015. 
  42. ^ AstRoMap European Astrobiology Roadmap. Gerda Horneck, Nicolas Walter, Frances Westall, John Lee Grenfell, William F. Martin, Felipe Gomez, Stefan Leuko, Natuschka Lee, Silvano Onofri, Kleomenis Tsiganis, Raffaele Saladino, Elke Pilat-Lohinger, Ernesto Palomba, Jesse Harrison, Fernando Rull, Christian Muller, Giovanni Strazzulla, John R. Brucato, Petra Rettberg, and Maria Teresa Capria. Astrobiology. Volume 16, Number 3, 2016. DOI:10.1089/ast.2015.1441
  43. ^ Webster, Guy; Brown, Dwayne (22 Juli 2011). "NASA's Next Mars Rover To Land At Gale Crater". NASA JPL. Diakses tanggal 22 Juli 2011. 
  44. ^ Chow, Dennis (22 Juli 2011). "NASA's Next Mars Rover to Land at Huge Gale Crater". Space.com. Diakses tanggal 22 Juli 2011. 
  45. ^ Amos, Jonathan (22 Juli 2011). "Mars rover aims for deep crater". BBC News. Diarsipkan dari versi asli tanggal 22 Juli 2011. Diakses tanggal 22 Juli 2011. 
  46. ^ Chang, Kenneth (9 Desember 2013). "On Mars, an Ancient Lake and Perhaps Life". The New York Times. Diakses tanggal 9 Desember 2013. 
  47. ^ European Space Agency (2 Mei 2016). Second ExoMars mission moves to next launch opportunity in 2020. Siaran pers. Diakses pada 2 Mei 2016.
  48. ^ "Polycyclic Aromatic Hydrocarbons: An Interview With Dr. Farid Salama". Astrobiology Magazine. 2000. Diarsipkan dari versi asli tanggal 20 Juni 2008. Diakses tanggal 20 Oktober 2008. 
  49. ^ Astrobiology. Macmillan Science Library: Space Sciences. 2006. Diakses tanggal 20 Oktober 2008. 
  50. ^ Penn State (19 Agustus 2006). "The Ammonia-Oxidizing Gene". Astrobiology Magazine. Diakses tanggal 20 Oktober 2008. 
  51. ^ "Stars and Habitable Planets". Sol Company. 2007. Diarsipkan dari versi asli tanggal 1 Oktober 2008. Diakses tanggal 20 Oktober 2008. 
  52. ^ "M Dwarfs: The Search for Life is On". Red Orbit & Astrobiology Magazine. 29 Agustus 2005. Diakses tanggal 20 Oktober 2008. 
  53. ^ Sagan, Carl. Communication with Extraterrestrial Intelligence. MIT Press, 1973, 428 pgs.
  54. ^ "You Never Get a Seventh Chance to Make a First Impression: An Awkward History of Our Space Transmissions". Lightspeed Magazine. Maret 2011. Diakses tanggal 13 Maret 2015. 
  55. ^ "Stephen Hawking: Humans Should Fear Aliens". Huffington Post. 25 Juni 2010. Diakses tanggal 2017-05-27. 
  56. ^ "Kepler Mission". NASA. 2008. Diarsipkan dari versi asli tanggal 31 October 2008. Diakses tanggal 20 October 2008. 
  57. ^ "The COROT space telescope". CNES. 17 October 2008. Diarsipkan dari versi asli tanggal 8 November 2008. Diakses tanggal 20 October 2008. 
  58. ^ "The Virtual Planet Laboratory". NASA. 2008. Diakses tanggal 20 October 2008. 
  59. ^ Ford, Steve (August 1995). "What is the Drake Equation?". SETI League. Diarsipkan dari versi asli tanggal 29 October 2008. Diakses tanggal 20 October 2008. 
  60. ^ Amir Alexander. "The Search for Extraterrestrial Intelligence: A Short History – Part 7: The Birth of the Drake Equation". 
  61. ^ "Astrobiology". Biology Cabinet. 26 September 2006. Diarsipkan dari versi asli tanggal 12 December 2010. Diakses tanggal 17 January 2011. 
  62. ^ Horner, Jonathan; Barrie Jones (24 August 2007). "Jupiter: Friend or foe?". Europlanet. Diarsipkan dari versi asli tanggal 2 February 2012. Diakses tanggal 20 October 2008. 
  63. ^ Jakosky, Bruce; David Des Marais; et al. (14 September 2001). "The Role of Astrobiology in Solar System Exploration". NASA. SpaceRef.com. Diakses tanggal 20 October 2008. 
  64. ^ Bortman, Henry (29 September 2004). "Coming Soon: "Good" Jupiters". Astrobiology Magazine. Diakses tanggal 20 October 2008. 
  65. ^ "Astrobiology". Biology Cabinet. 26 September 2006. Diarsipkan dari versi asli tanggal 12 December 2010. Diakses tanggal 17 January 2011. 
  66. ^ [Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context.] N. Merino, H.S. Aronson, D. Bojanova, J. Feyhl-Buska, et al. - EarthArXiv. February, 2019.
  67. ^ a b Chamberlin, Sean (1999). "Black Smokers and Giant Worms". Fullerton College. Diakses tanggal 11 February 2011. 
  68. ^ Trixler, F (2013). "Quantum tunnelling to the origin and evolution of life". Current Organic Chemistry. 17: 1758–1770. doi:10.2174/13852728113179990083. PMC 3768233alt=Dapat diakses gratis. PMID 24039543. 
  69. ^ Carey, Bjorn (7 February 2005). "Wild Things: The Most Extreme Creatures". Live Science. Diakses tanggal 20 October 2008. 
  70. ^ Cavicchioli, R. (Fall 2002). "Extremophiles and the search for extraterrestrial life" (PDF). Astrobiology. 2 (3): 281–92. Bibcode:2002AsBio...2..281C. doi:10.1089/153110702762027862. PMID 12530238. 
  71. ^ Young, Kelly (10 November 2005). "Hardy lichen shown to survive in space". New Scientist. Diakses tanggal 17 January 2019. 
  72. ^ a b c d e f The Planetary Report, Volume XXIX, number 2, March/April 2009, "We make it happen! Who will survive? Ten hardy organisms selected for the LIFE project, by Amir Alexander
  73. ^ Hashimoto, T.; Kunieda, T. (2017). "DNA Protection protein, a novel mechanism of radiation tolerance: Lessons from Tardigrades". Life. 7 (2): 26. doi:10.3390/life7020026. PMC 5492148alt=Dapat diakses gratis. PMID 28617314. 
  74. ^ Cavicchioli, R. (Fall 2002). "Extremophiles and the search for extraterrestrial life" (PDF). Astrobiology. 2 (3): 281–92. Bibcode:2002AsBio...2..281C. doi:10.1089/153110702762027862. PMID 12530238. 
  75. ^ "Jupiter's Moon Europa Suspected of Fostering Life". Daily University Science News. 2002. Diakses tanggal 8 August 2009. 
  76. ^ Weinstock, Maia (24 August 2000). "Galileo Uncovers Compelling Evidence of Ocean on Jupiter's Moon Europa". Space.com. Diakses tanggal 20 October 2008. 
  77. ^ Cavicchioli, R. (Fall 2002). "Extremophiles and the search for extraterrestrial life". Astrobiology. 2 (3): 281–92. Bibcode:2002AsBio...2..281C. doi:10.1089/153110702762027862. PMID 12530238. 
  78. ^ David, Leonard (7 February 2006). "Europa Mission: Lost in NASA Budget". Space.com. Diakses tanggal 8 August 2009. 
  79. ^ "Clues to possible life on Europa may lie buried in Antarctic ice". Marshal Space Flight Center. NASA. 5 March 1998. Diarsipkan dari versi asli tanggal 31 July 2009. Diakses tanggal 8 August 2009. 
  80. ^ Lovett, Richard A. (31 May 2011). "Enceladus named sweetest spot for alien life". Nature. doi:10.1038/news.2011.337. Diakses tanggal 3 June 2011. 
  81. ^ Kazan, Casey (2 June 2011). "Saturn's Enceladus Moves to Top of "Most-Likely-to-Have-Life" List". The Daily Galaxy. Diakses tanggal 3 June 2011. 
  82. ^ Trixler, F (2013). "Quantum tunnelling to the origin and evolution of life". Current Organic Chemistry. 17: 1758–1770. doi:10.2174/13852728113179990083. PMC 3768233alt=Dapat diakses gratis. PMID 24039543.