Mekanika klasik

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Lompat ke: navigasi, cari

Mekanika klasik adalah bagian dari ilmu fisika mengenai gaya yang bekerja pada benda. Sering dinamakan "Mekanika Newton" dari Newton dan hukum gerak Newton. Mekanika klasik dibagi menjadi sub bagian lagi, yaitu statika (mempelajari benda diam), kinematika (mempelajari benda bergerak), dan dinamika (mempelajari benda yang terpengaruh gaya). Lihat juga mekanika.

Mekanika klasik menghasilkan hasil yang sangat akurat dalam kehidupan sehari-hari. Dia diikuti oleh relativitas khusus untuk sistem yang bergerak dengan kecepatan sangat tinggi, mendekati kecepatan cahaya, mekanika kuantum untuk sistem yang sangat kecil, dan medan teori kuantum untuk sistem yang memiliki kedua sifat di atas. Namun, mekanika klasik masih sangat berguna, karena ia lebih sederhana dan mudah diterapkan dari teori lainnya, dan dia juga memiliki perkiraan yang valid dan luas terapannya. Mekanika klasik dapat digunakan untuk menjelaskan gerakan benda sebesar manusia (seperti gasing dan bisbol), juga benda-benda astronomi (seperti planet dan galaksi, dan beberapa benda mikroskopis (seperti molekul organik).

Mekanika klasik menggambarkan dinamika partikel atau sistem partikel. Dinamika partikel demikian, ditunjukkan oleh hukum-hukum Newton tentang gerak, terutama oleh hukum kedua Newton. Hukum ini menyatakan, "Sebuah benda yang memperoleh pengaruh gaya atau interaksi akan bergerak sedemikian rupa sehingga laju perubahan waktu dari momentum sama dengan gaya tersebut".

Hukum-hukum gerak Newton baru memiliki arti fisis, jika hukum-hukum tersebut diacukan terhadap suatu kerangka acuan tertentu, yakni kerangka acuan inersia (suatu kerangka acuan yang bergerak serba sama - tak mengalami percepatan). Prinsip Relativitas Newtonian menyatakan, "Jika hukum-hukum Newton berlaku dalam suatu kerangka acuan maka hukum-hukum tersebut juga berlaku dalam kerangka acuan lain yang bergerak serba sama relatif terhadap kerangka acuan pertama".

Konsep partikel bebas diperkenalkan ketika suatu partikel bebas dari pengaruh gaya atau interaksi dari luar sistem fisis yang ditinjau (idealisasi fakta fisis yang sebenarnya). Gerak partikel terhadap suatu kerangka acuan inersia tak gayut (independen) posisi titik asal sistem koordinat dan tak gayut arah gerak sistem koordinat tersebut dalam ruang. Dikatakan, dalam kerangka acuan inersia, ruang bersifat homogen dan isotropik. Jika partikel bebas bergerak dengan kecepatan konstan dalam suatu sistem koordinat selama interval waktu tertentu tidak mengalami perubahan kecepatan, konsekuensinya adalah waktu bersifat homogen.

Deskripsi teori[sunting | sunting sumber]

Analisis gerak parabola adalah bagian dari mekanika klasik.

Berikut ini adalah penjelasan konsep dasar mekanika klasik. Agar sederhana, biasanya objek real dimodelkan dengan partikel titik (objek dengan ukuran yang dapat diabaikan). Pergerakan partikel titik dikarakteristikkan dengan beberapa parameter: posisinya, massa, dan gaya yang mengenainya.

Posisi dan turunannya[sunting | sunting sumber]

Besaran SI untuk "mekanikal"
(bukan elektromagnetisme atau termal)
satuan kg, m dan s
posisi m
posisi sudut/sudut tanpa satuan (radian)
kecepatan m·s−1
kecepatan sudut s−1
percepatan m·s−2
percepatan sudut s−2
jerk m·s−3
"angular jerk" s−3
energi spesifik m2·s−2
absorbed dose rate m2·s−3
momen inersia kg·m2
momentum kg·m·s−1
momentum sudut kg·m2·s−1
gaya kg·m·s−2
torsi kg·m2·s−2
energi kg·m2·s−2
daya kg·m2·s−3
tekanan dan densitas energi kg·m−1·s−2
tegangan permukaan kg·s−2
konstanta pegas kg·s−2
iradiansi dan fluks energi kg·s−3
viskositas kinematik m2·s−1
viskositas dynamik kg·m−1·s−1
massa jenis|kg·m−3
densitas bilangan m−3
aksi kg·m2·s−1

Kecepatan dan kelajuan[sunting | sunting sumber]

Kecepatan, atau perubahan posisi tiap waktu, didefinisikan sebagai turunan posisi terhadap waktu:

.

Dalam mekanika klasik, kecepatan adalah masalah penambahan dan pengurangan. Contohnya, apabila suatu mobil berjalan ke arah timur dengan kecepatan 60 km/jam dan melewati mobil lain yang kecepatannya 50 km/jam, maka dari pandangan mobil yang lebih lambat, mobil itu berjalan dengan kecepatan 60 − 50 = 10 km/jam. Sedangkan, dari perspektif mobil yang lebih cepat, mobil yang lebih lambat bergerak 10 km/jam ke arah barat. Kecepatan adalah besaran vektor dan diperhitungkan dengan analisis vektor.

Secara matematis, kecepatan objek pertama tadi diberi tanda vektor u = ud dan kecepatan objek kedua diberi tanda vektor v = ve, dengan u adalah kecepatan objek pertama, v adalah kecepatan objek kedua, dan d serta e adalah vektor satuan pada arah gerak tiap objek, maka kecepatan objek pertama dilihat dari objek kedua adalah

Juga,

Ketika kedua objek bergerak pada arah yang sama, maka persamaan menjadi

Atau, dengan mengabaikan arah, perbedaan keduanya (dalam kelajuan) adalah:

Percepatan[sunting | sunting sumber]

Percepatan adalah turunan kecepatan tiap satuan waktu (turunan kedua dari posisi terhadap waktu):

Percepatan menunjukkan perubahan kecepatan tiap waktu: entah besarannya, arahnya, atau keduanya. Jika besaran kecepatan v berkurang, maka disebut sebagai perlambatan.

Gaya; Hukum kedua Newton[sunting | sunting sumber]

Newton pertama kali menuliskan secara matematis hubugan antara gaya dan momentum. Beberapa fisikawan menerjemahkan hukum kedua gerak Newton sebagai definisi gaya dan massa, dimana yang lain menganggapnya sebagai postulat dasar. Rumus "Hukum kedua Newton" adalah:

Besaran mv disebut sebagai momentum (kanonikal). Gaya bersih pada sebuah partikel sama dengan perubahan momentrum tiap saat terhadap waktu. Karena definisi percepatan adalah a = dv/dt, maka hukum ini dapat disederhanakan menjadi:

Maka sejauh gaya yang bekerja pada partikel diketahui, hukum kedua Newton cukup untuk menjelaskan pergerakan partikel. Ketika salah satu hubungan independen diketahui, maka dapat disubstitusikan ke hukum kedua Newton untuk didapatkan persamaan diferensial biasa, yang umum disebut persamaan gerak.

Sebagai contoh, asumsikan bahwa hanya gaya friksi yang bekerja pada partikel, maka dapat dimodelkan sebagai fungsi kecepatan partikel, contohnya:

dengan λ adalah konstanta positif, tanda negatif menunjukkan gaya bekerja berlawanan arah terhadap kecepatan. Maka persamaan gerak menjadi

Dapat diintegrasikan untuk didapatkan

dengan v0 adalah kecepatan awal. Hal ini berarti kecepatan partikel ini meluruh secara eksponensial menjadi nol selagi waktu berjalan. Pada kasus ini, dapat dilihat juga bahwa energi kineik partikel diserap oleh gaya gesek (kemudian diubah lagi menjadi energi panas sesuai hukum kekekalan energi), dan partikel akan melambat. Persamaan ini dapat diintegrasikan lagi untuk mendapatkan posisi r dari partikel sebagai fungsi waktu.

Kerja dan energi[sunting | sunting sumber]

Jika suatu gaya konstan sebesar F bekerja pada partikel sehingga menyebabkan perpindahan sejauh Δr,[note 1]maka kerja yang dilakukan oleh gaya tersebut adalah produk skalar dari vektor gaya dan perpindahan:

Lebih umum, jika gaya bervariasi sebagai fungsi posisi selagi partikel berpindah dari r1 ke r2 melalui jalur C, maka kerja yang diberikan pada partikel dinyatakan dalam integral garis

Jika kerja yang dilakukan untuk memindahkan partikel dari r1 ke r2 besarnya sama tidak peduli jalur apa yang dilewati, maka gaya tersebut dinamakan gaya konservatif. Gravitasi adalah contoh lain gaya konservatif, juga pegas ideal, seperti ditulis pada Hukum Hooke. Gaya akibat friksi bukan gaya konservatif.

Energi kinetik Ek dari partikel bermassa m yang bergerak dengan kelajuan v adalah

Untuk objek yang terdiri dari banyak partikel, energi kinetik dari objek tersebut adalah gabungan semua energi kinetik dari semua partikel.

Teorema kerja-energi menyatakan bahwa partikel bermassa m, maka total kerja W yang dilakukan ke partikel akibat pergerakan dari posisi r1 ke r2 sama dengan perubahan energi kinetik Ek partikel:

Gaya konservatif dapat dinyatakan sebagai gradien fungsi skalar, dikenal dengan energi potensial yang dilambangkan Ep:

Jika semua gaya yang bekerja pada partikel adalah konservatif, dan Ep adalah total energi potensial, didapatkan dengan menjumlahkan energi-energi potensial

Penurunan energi potensial sama dengan kenaikan energi kinetik

Hasilnya dikenal dengan kekekalan energi dan menyatakan bahwa total energi,

selalu konstan tiap saat.

Prinsip Hamilton[sunting | sunting sumber]

Jika ditinjau gerak partikel yang terkendala pada suatu permukaan bidang, maka diperlukan adanya gaya tertentu yakni gaya konstrain yang berperan mempertahankan kontak antara partikel dengan permukaan bidang. Namun sayang, tak selamanya gaya konstrain yang beraksi terhadap partikel dapat diketahui. Pendekatan Newtonian memerlukan informasi gaya total yang beraksi pada partikel. Gaya total ini merupakan keseluruhan gaya yang beraksi pada partikel, termasuk juga gaya konstrain. Oleh karena itu, jika dalam kondisi khusus terdapat gaya yang tak dapat diketahui, maka pendekatan Newtonian tak berlaku. Sehingga diperlukan pendekatan baru dengan meninjau kuantitas fisis lain yang merupakan karakteristik partikel, misal energi totalnya. Pendekatan ini dilakukan dengan menggunakan prinsip Hamilton, dimana persamaan Lagrange yakni persamaan umum dinamika partikel dapat diturunkan dari prinsip tersebut.

Prinsip Hamilton mengatakan, "Dari seluruh lintasan yang mungkin bagi sistem dinamis untuk berpindah dari satu titik ke titik lain dalam interval waktu spesifik (konsisten dengan sembarang konstrain), lintasan nyata yang diikuti sistem dinamis adalah lintasan yang meminimumkan integral waktu selisih antara energi kinetik dengan energi potensial.".

Persamaan Lagrange[sunting | sunting sumber]

Persamaan gerak partikel yang dinyatakan oleh persamaan Lagrange dapat diperoleh dengan meninjau energi kinetik dan energi potensial partikel tanpa perlu meninjau gaya yang beraksi pada partikel. Energi kinetik partikel dalam sistem koordinat Kartesius adalah fungsi dari kecepatan, energi potensial partikel yang bergerak dalam medan gaya konservatif adalah fungsi dari posisi.

Jika didefinisikan Lagrangian sebagai selisih antara energi kinetik dan energi potensial. Dari prinsip Hamilton, dengan mensyaratkan kondisi nilai stasioner maka dapat diturunkan persamaan Lagrange. Persamaan Lagrange merupakan persamaan gerak partikel sebagai fungsi dari koordinat umum, kecepatan umum, dan mungkin waktu. Kegayutan Lagrangian terhadap waktu merupakan konsekuensi dari kegayutan konstrain terhadap waktu atau dikarenakan persamaan transformasi yang menghubungkan sistem koordinat Kartesius dan koordinat umum mengandung fungsi waktu. Pada dasarnya, persamaan Lagrange ekivalen dengan persamaan gerak Newton, jika koordinat yang digunakan adalah koordinat Kartesius.

Mengapa perlu formulasi Lagrangian?[sunting | sunting sumber]

Dalam mekanika Newtonian, konsep gaya diperlukan sebagai kuantitas fisis yang berperan dalam aksi terhadap partikel. Dalam dinamika Lagrangian, kuantitas fisis yang ditinjau adalah energi kinetik dan energi potensial partikel. Keuntungannya, karena energi adalah besaran skalar, maka energi bersifat invarian terhadap transformasi koordinat.

Dalam kondisi tertentu, tidaklah mungkin atau sulit menyatakan seluruh gaya yang beraksi terhadap partikel, maka pendekatan Newtonian menjadi rumit pula atau bahkan tak mungkin dilakukan. Oleh karena itu, pada perkembangan berikutnya dari mekanika, prinsip Hamilton berperan penting karena ia hanya meninjau energi partikel saja.

Mekanika Klasik dan Fisika Modern[sunting | sunting sumber]

Meskipun mekanika klasik hampir cocok dengan teori "klasik" lainnya seperti elektrodinamika dan termodinamika klasik, ada beberapa ketidaksamaan ditemukan di akhir abad 19 yang hanya bisa diselesaikan dengan fisika modern. Khususnya, elektrodinamika klasik tanpa relativitas memperkirakan bahwa kecepatan cahaya adalah relatif konstan dengan Luminiferous aether, perkiraan yang sulit diselesaikan dengan mekanik klasik dan yang menuju kepada pengembangan relativitas khusus. Ketika digabungkan dengan termodinamika klasik, mekanika klasik menuju ke paradoks Gibbs yang menjelaskan entropi bukan kuantitas yang jelas dan ke penghancuran ultraviolet yang memperkirakan benda hitam mengeluarkan energi yang sangat besar. Usaha untuk menyelesaikan permasalahan ini menuju ke pengembangan mekanika kuantum.

Lihat pula[sunting | sunting sumber]

Referensi[sunting | sunting sumber]

  1. ^ The displacement Δr is the difference of the particle's initial and final positions: Δr = rfinalrinitial.

Bacaan lebih lanjut[sunting | sunting sumber]

Pranala luar[sunting | sunting sumber]