Integral garis

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Topik dalam kalkulus

Teorema dasar
Limit fungsi
Kekontinuan
Kalkulus vektor
Kalkulus matriks
Teorema nilai purata

Turunan

Kaidah darab
Kaidah hasil-bagi
Kaidah rantai
Turunan implisit
Teorema Taylor
Laju berhubungan
Tabel turunan

Integral

Tabel integral
Integral takwajar
Pengintegralan dengan:
bagian per bagian, cakram, silinder, substitusi,
substitusi trigonometri,
pecahan parsial

Dalam matematika, integral garis adalah integral yang dihitung dengan mengevaluasi fungsi yang hendak diintegralkan sepanjang seutas kurva (garis).

Fungsi yang hendak diintegralkan mungkin adalah sebuah medan skalar atau medan vektor. Nilai dari integral garis adalah jumlah dari nilai medan pada semua titik pada kurva, dibobotkan dengan suatu fungsi skalar pada kurva (biasanya panjang busur, atau pada medan vektor, hasilkali skalar dari medan vektor dengan vektor diferensial pada kurva. Pembobotan ini membedakan integral garis dengan integral yang lebih sederhana pada suatu selang. Banyak rumus sederhana dalam fisika, (contohnya W = F·s) memiliki analogi kontinu alami dalam bentuk integral garis (W=∫C F· ds). Integral garis dapat digunakan untuk menghitung kerja yang dilakukan pada benda yang bergerak dalam medan listrik atau gravitasi.

Lihat pula[sunting | sunting sumber]