Integral takwajar

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Loncat ke navigasi Loncat ke pencarian
Integral takwajar jenis pertama. Integral perlu didefiniskan pada domain yang tak berbatas (batas adalah takhingga)
Integral takwajar jenis kedua. Integral mungkin tidak ada karena adanya asimtot tegaklurus pada fungsi tersebut

Dalam kalkulus, integral takwajar adalah limit dari integral tentu dengan batas pengintegralan mendekati bilangan riil tertentu, , , atau gabungan dari beberapa diantaranya. Integral takwajar dinotasikan seperti integral tentu, namun dengan batas pengintegralan tak hingga.

Dengan kata lain, integral tak wajar adalah limit dengan bentuk

atau

dengan limit diambil pada salah satu atau kedua batasnya. (Apostol 1967, §10.23). Integral takwajar seringkali perlu digunakan untuk menghitung nilai integral yang tidak ada dalam arti konvensional (misalnya sebagai integral Riemann), karena adanya singularitas pada fungsi yang hendak diintegralkan, atau salah satu batas adalah takhingga.

Konvergensi integral[sunting | sunting sumber]

Integral yang tidak tepat menyatu jika batasan yang menentukannya adanya. Dengan demikian contohnya seorang mengatakan bahwa integral tak wajar pada nilai

ada dan sama dengan L jika integral di bawah batas untuk semua cukup besar t, dan nilai limitnya sama dengan L.

Hal ini juga mungkin untuk integral yang tidak tepat untuk menyimpang hingga tak terbatas. Dalam hal ini, seseorang dapat menetapkan nilai dari ∞ (atau -∞) ke integral. Contohnya

Namun sedemikian, integral tidak tepat lainnya mungkin hanya menyimpang ke arah tertentu, seperti nilai

yang tidak ada, bahkan sebagai bilangan riil diperpanjang. Ini disebut divergensi dengan osilasi.

Batasan dari teknik integr yang tidak tepat adalah bahwa batasan tersebut harus diambil sehubungan dengan satu titik akhir pada satu waktu. Jadi, integral tak wajar dari bentuk

dapat didefinisikan dengan mengambil dua batasan terpisah; yaitu

Hal ini.


Jenis integral[sunting | sunting sumber]

- Dalam pengembangan -

Integral Riemann dan integral[sunting | sunting sumber]

- Dalam pengembangan -

Lebesgue yang tidak tepat[sunting | sunting sumber]

- Dalam pengembangan -

Singularitas[sunting | sunting sumber]

- Dalam pengembangan -

Nilai pokok Cauchy[sunting | sunting sumber]

- Dalam pengembangan -

Summability[sunting | sunting sumber]

- Dalam pengembangan -

Integral tidak tepat multivariabel[sunting | sunting sumber]

- Dalam pengembangan -

Contoh[sunting | sunting sumber]

integral Riemann tidak dapat didefinisikan untuk fungsi pada interval [1, ∞). Hal ini karena domain integral tersebut memiliki domain integrasi tak terbatas. Meskipun demikian, integral Riemann dapat memiliki nilai sebagai integral takwajar dengan menafsirkannya sebagai limit

Integral Riemann juga tidak dapat didefinisikan untuk fungsi pada interval [0, 1] karena integran tak terbatas pada domain integrasi. Meskipun demikian, integral tersebut dapat ditafsirkan sebagai limit

Referensi[sunting | sunting sumber]

  • Apostol, T (1967), Calculus, Vol. 1 (edisi ke-2nd), Jon Wiley & Sons .