Teorema nilai purata

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Untuk setiap fungsi kontinu pada selang tertutup [ab] dan terdiferensialkan pada selang terbuka (ab) terdapat paling tidak satu c adalam selang (ab) sedemikian rupa sehingga garis yang menghubungkan titik-titik ujung selang (secant) [ab] sejajar terhadap garis singgung (tangent) pada c.

Teorema nilai purata atau teorema nilai rata-rata menyatakan bahwa pada sembarang bagian kurva mulus, terdapat paling tidak satu titik di mana turunan (kemiringan) kurva tersebut sama dengan (sejajar terhadap) "rata-rata" turunan bagian kurva tersebut.[1] Teorema ini digunakan untuk membuktikan berbagai teorema lain tentang fungsi pada suatu selang, yang dimulai dengan anggapan tentang turunan pada titik-titik di selang tersebut.

Teorema ini dapat dipahami dengan menerapkannya pada gerakan: bila sebuah mobil menempuh jarak 100 km dalam satu jam, sehingga rata-rata kecepatannya dalam waktu itu adalah 100 km/jam, maka pada suatu waktu dalam perjalanan itu laju sesaat mobil haruslah tepat 100 km/jam.

Versi awal teorema ini pertama kali diperikan oleh Parameshvara (1370–1460) dari mazhab astronomi dan matematika Kerala dalam komentarnya tentang Govindasvāmi and Bhaskara II.[2] Bentuk modern teorema nilai rata-rata dinyatakan oleh Augustin Louis Cauchy (1789–1857)

Teorema nilai rata-rata merupakan salah satu hasil terpenting dalam kalkulus diferensial, dan juga salah satu teorema penting dalam analisis matematika, dan esensial dalam membuktikan teorema dasar kalkulus.

Sejarah[sunting | sunting sumber]

Kasus khusus teorema ini pertama kali dijelaskan oleh Parameshvara (1370–1460), dari Sekolah Astronomi dan Matematika Kerala di India, dalam komentarnya tentang Govindasvāmi dan Bhāskara II.[3] Suatu bentuk teorema terbatas dibuktikan oleh Michel Rolle pada tahun 1691; hasilnya adalah apa yang sekarang dikenal sebagai Teorema Rolle, dan terbukti hanya untuk polinomial, tanpa teknik kalkulus. Teorema nilai rata-rata dalam bentuk modernnya dinyatakan dan dibuktikan oleh Augustin Louis Cauchy pada tahun 1823.[4]

Pernyataan formal[sunting | sunting sumber]

Fungsi mencapai kemiringan garis potong antara dan sebagai turunan pada intinya .
Mungkin juga ada beberapa garis singgung sejajar dengan garis potong.
Misalkan f: [a, b] → R adalah fungsi kontinu pada selang tertutup [a, b], and dan terdiferensialkan pada selang terbuka (a, b), di mana a < b. Maka terdapat suatu c dalam (a, b) sehingga

Teorema nilai rata-rata adalah generalisasi teorema Rolle, yang menganggap f(a) = f(b), sehingga ruas kanan persamaan di atas adalah nol.

Teorema nilai rata-rata masih sahih dalam keadaan yang lebih umum. Kita hanya perlu mengasumsikan bahwa f:[a, b] → R adalah kontinu dalam selang [a, b], dan untuk setiap x dalam (a, b), limitnya adalah

ada sebagai bilangan terhingga atau sama dengan +∞ atau −∞. Bila berhingga, limit tersebut sama dengan f' (x). Contoh versi teorema ini berlaku diberikan oleh fungsi riil akar kubik yang memetakan x ke x1/3, yang turunannya mengarah ke takhingga di titik asal.

Perhatikan bahwa teorema ini tidak berlaku bila fungsi terdiferensialkan itu bernilai kompleks, alih-alih bernilai riil. Sebagai contoh, definisikan untuk semua x bernilai riil. Maka

,

sedangkan

.

Bukti[sunting | sunting sumber]

Pernyataan (ƒ(b) − ƒ(a)) / (b − a) memberikan kemiringan garis yang menghubungkan titik (aƒ(a)) dan (bƒ(b)), yang merupakan garis sekan (tali busur) grafik fungsi f, sementara ƒ ′(x) memberikan kemiringan garis singgung kurva di titik (xƒ(x)). Maka teorema nilai purata menyebutkan bahwa kita dapat menemukan titik yang berada di antara titik-titik ujung garis sekan tersebut sehingga garis singgung di titik tersebut sejajar dengan garis sekan.


Definisikan g(x) = ƒ(x) − rx, di mana r adalah konstanta. Karena ƒ kontinu pada [ab] dan terdiferensialkan pada(ab), hal yang sama juga berlaku buat g. Kita sekarang ingin memilih r sedemikian sehingga g memenuhi syarat teorema Rolle, yaitu

Menurut teorema Rolle, karena g kontinu, dan g(a) = g(b), terdapat suatu c dalam (ab) sedemikian sehingga g ′(c) = 0, dan dari persamaan g(x) = ƒ(x) − rx berarti

seperti yang hendak dibuktikan.

Teorema nilai purata untuk integral[sunting | sunting sumber]

Rujukan[sunting | sunting sumber]

Pranala luar[sunting | sunting sumber]