Perkalian skalar

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Lompat ke: navigasi, cari
Perkalian skalar sebuah vektor dengan faktor 3 memanjangkan vektor itu.
Perkalian skalar −a dan 2a dari vektor a

Perkalian skalar (bahasa Inggris: scalar multiplication) dalam matematika, adalah salah satu operasi dasar yang mendefinisikan suatu ruang vektor dalam aljabar linear[1][2][3] (atau lebih umum, sebuah modul dalam aljabar abstrak[4][5]). Dalam suatu konteks geometri intuitif, perkalian skalar dari suatu vektor real dengan suatu bilangan real positif melipatgandakan besaran vektor itu tanpa mengubah arahnya. Istilah "skalar" sendiri diturunkan dari penggunaan ini: suatu skalar adalah yang membagi suatu vektor dalam skala. Perkalian skalar adalah perkalian suatu vektor dengan suatu skalar (di mana produk atau hasilnya adalah sebuah vektor) dan harus dibedakan dengan "produk skalar" dua vektor (di mana hasilnya adalah suatu skalar).

Definisi[sunting | sunting sumber]

Secara umum, jika K adalah sebuah field dan V adalah sebuah ruang vektor di atas K, maka perkalian skalar adalah suatu fungsi dari K × V ke V. Hasil penerapan fungsi ini ke c dalam K dan v dalam V dilambangkan dengan cv.

Sifat[sunting | sunting sumber]

Perkalian skalar menuruti kaidah-kaidah berikut (vektor ditulis dalam boldface):

  • Additivity dalam skalar: (c + d)v = cv + dv;
  • Additivity dalam vektor: c(v + w) = cv + cw;
  • Kompatibilitas produk skalar-skalar dengan perkalian skalar: (cd)v = c(dv);
  • Mengalikan dengan 1 tidak mengubah suatu vektor: 1v = v;
  • Mengalikan dengan 0 menghasilkan vektor nol atau zero vector: 0v = 0;
  • Mengalikan dengan −1 menghasilkan additive inverse: (−1)v = −v.

Di sini + adalah penjumlahan baik dalam field atau dalam ruang vektor, sebagaimana layaknya; dan 0 adalah identitas penjumlahan dalam keduanya Juxtaposition mengindikasikan baik perkalian skalar atau operasi perkalian dalam field.

Lihat pula[sunting | sunting sumber]

Referensi[sunting | sunting sumber]

  1. ^ Lay, David C. (2006). Linear Algebra and Its Applications (edisi ke-3rd). Addison–Wesley. ISBN 0-321-28713-4. 
  2. ^ Strang, Gilbert (2006). Linear Algebra and Its Applications (edisi ke-4th). Brooks Cole. ISBN 0-03-010567-6. 
  3. ^ Axler, Sheldon (2002). Linear Algebra Done Right (edisi ke-2nd). Springer. ISBN 0-387-98258-2. 
  4. ^ Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (edisi ke-3rd). John Wiley & Sons. ISBN 0-471-43334-9. 
  5. ^ Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Springer. ISBN 0-387-95385-X. 

Templat:Algebra-footer