Kurva

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Loncat ke navigasi Loncat ke pencarian
Parabola, salah satu kurva paling sederhana, setelah garis (lurus)

Dalam matematika, kurva (juga disebut garis lengkung dalam teks yang lebih tua) adalah objek yang mirip dengan garis yang tidak harus lurus.

Secara intuitif, kurva dapat dianggap sebagai jejak yang ditinggalkan oleh titik bergerak. Ini adalah definisi yang muncul, lebih dari 2000 tahun yang lalu dalam buku Elements Euclid: "Garis [melengkung][a] adalah [...] spesies kuantitas pertama, yang hanya memiliki satu dimensi, yaitu panjang, tanpa lebar atau kedalaman apa pun, dan tidak lain adalah aliran atau jalur dari titik yang [...] akan tinggalkan dari imajinernya, memindahkan beberapa sisa di panjang, dikecualikan dari lebar apa pun."[1]

Definisi kurva ini telah diformalkan dalam matematika modern sebagai: Sebuah Kurva adalah gambar fungsi kontinu dari suatu interval ke ruang topologi. Dalam beberapa konteks, fungsi yang mendefinisikan kurva disebut parametrization, dan kurva adalah kurva parametrik. Dalam artikel ini, kurva ini kadang-kadang disebut kurva topologi untuk membedakannya dari kurva yang lebih terbatas seperti kurva yang dapat dibedakan. Definisi ini mencakup sebagian besar kurva yang dipelajari dalam matematika; pengecualian yang menonjol adalah kurva level (yang merupakan gabungan dari kurva dan titik yang terisolasi), dan kurva aljabar (lihat di bawah). Kurva level dan kurva aljabar kadang-kadang disebut kurva implisit, karena mereka umumnya didefinisikan oleh persamaan implisit.

Namun demikian, kelas kurva topologi sangat luas, dan mengandung beberapa kurva yang tidak terlihat seperti yang diharapkan seseorang untuk kurva, atau bahkan tidak dapat ditarik. Ini adalah kasus kurva mengisi ruang dan kurva fraktal. Untuk mengasuransikan lebih banyak keteraturan, fungsi yang mendefinisikan suatu kurva seringkali dianggap dapat dibedakan, dan kurva tersebut kemudian dikatakan kurva yang berbeda.

Sejarah[sunting | sunting sumber]

Seni megalitik dari Newgrange menunjukkan minat awal pada kurva

Ketertarikan pada kurva dimulai jauh sebelum mereka menjadi subjek studi matematika. Ini dapat dilihat dalam banyak contoh penggunaan dekoratif mereka dalam seni dan pada benda sehari-hari sejak zaman prasejarah.[2] Kurva, atau setidaknya representasi grafisnya, mudah dibuat, misalnya dengan tongkat di pasir di pantai.

Secara historis, garis istilah digunakan sebagai pengganti kurva istilah yang lebih modern. Oleh karena itu frase garis lurus dan garis kanan digunakan untuk membedakan apa yang sekarang disebut garis dari garis lengkung. Misalnya, dalam Buku I Elemen Euclid, sebuah garis didefinisikan sebagai "panjang tanpa lebar" (Def. 2), sedangkan garis lurus didefinisikan sebagai "garis yang terletak secara merata dengan titik-titik pada dirinya sendiri" (Def. 4) . Gagasan Euclid tentang sebuah garis barangkali diklarifikasi dengan pernyataan "Ekstremitas dari suatu garis adalah poin," (Def. 3). Kemudian komentator selanjutnya mengklasifikasikan baris-baris berdasarkan berbagai skema.

Kurva yang berbeda[sunting | sunting sumber]

Secara dalam, kurva yang berbeda adalah kurva yang didefinisikan sebagai gambar fungsi yang dapat dibedakan secara lokal dari interval dari bilangan real menjadi bermacam-macam X, seringkali

Panjang kurva[sunting | sunting sumber]

Jika adalah ruang-dimensi Euclidean , dan jika adalah fungsi injeksi dan terus menerus dapat dibedakan, kemudian panjang didefinisikan sebagai kuantitas

Panjang kurva tidak tergantung pada parameterisasi .

Khususnya, panjangnya dari grafik fungsi yang terus dapat dibedakan didefinisikan pada interval tertutup adalah

Lebih umum, jika adalah ruang metrik dengan metrik , maka kita bisa mendefinisikan panjang kurva dengan

di mana supremum diambil alih semua dan semua partisi dari .

Kurva yang dapat diperbaiki adalah kurva dengan panjang yang terbatas. Kurva disebut alami (atau satuan kecepatan parametrized oleh panjang busur) jika ada seperti yang , kita mempunyai

Jika adalah fungsi berkelanjutan Lipschitz, maka secara otomatis dapat diperbaiki. Selain itu, dalam hal ini, seseorang dapat menentukan kecepatan (atau turunan metrik) dari pada sebagai

dan kemudian ditunjukkan itu

Geometri diferensial[sunting | sunting sumber]

Sementara contoh pertama kurva yang dipenuhi sebagian besar adalah kurva bidang (yaitu, dalam kata sehari-hari, garis lengkung dalam ruang dua dimensi), ada contoh nyata seperti helix yang ada secara alami dalam tiga dimensi. Kebutuhan geometri, dan juga misalnya mekanika klasik harus memiliki gagasan tentang kurva dalam ruang dari sejumlah dimensi. Dalam relativitas umum, garis dunia adalah kurva dalam ruang waktu.

Jika adalah manifold terdiferensiasi, maka kita dapat mendefinisikan gagasan kurva terdiferensiasi dalam . Gagasan umum ini cukup untuk mencakup banyak aplikasi kurva dalam matematika. Dari sudut pandang lokal seseorang dapat mengambil menjadi ruang Euclidean. Di sisi lain, berguna untuk menjadi lebih umum, dalam hal itu (misalnya) dimungkinkan untuk mendefinisikan vektor garis singgung ke dengan melalui pengertian kurva ini.

Jika adalah manifold yang halus, kurva yang mulus di adalah peta yang halus

.

Ini adalah gagasan dasar. Ada juga gagasan yang semakin terbatas. Jika adalah manifold (mis., manifold yang grafiknya adalah kali terus menerus dapat dibedakan), maka sebuah kurva dalam adalah kurva yang hanya diasumsikan (yaitu. kali terus menerus dibedakan). Jika adalah manifold analitik (yaitu terdiferensiasi tak terhingga dan bagan dapat dinyatakan sebagai seri daya), dan adalah peta analitik, lalu dikatakan sebagai kurva analitik.

Kurva yang dapat dibedakan dikatakan teratur jika turunannya tidak pernah hilang. (Dengan kata lain, kurva biasa tidak pernah melambat ke berhenti atau mundur dengan sendirinya.) Dua kurva terdiferensiasi

dan

dikatakan setara jika ada kata sifat peta

sedemikian rupa sehingga peta terbalik

juga , dan

untuk semua . Peta disebut reparametrisasi dari ; dan ini membuat hubungan kesetaraan pada kumpulan semua kurva terdiferensiasi dalam . Sebuah busur adalah kelas ekivalensi dari kurva di bawah hubungan reparametrisasi.

Catatan[sunting | sunting sumber]

  1. ^ Dalam penggunaan matematika saat ini, garis lurus. Garis-garis sebelumnya bisa melengkung atau lurus.

Referensi[sunting | sunting sumber]

  1. ^ In (rather old) French: "La ligne est la première espece de quantité, laquelle a tant seulement une dimension à sçavoir longitude, sans aucune latitude ni profondité, & n'est autre chose que le flux ou coulement du poinct, lequel […] laissera de son mouvement imaginaire quelque vestige en long, exempt de toute latitude." Pages 7 and 8 of Les quinze livres des éléments géométriques d'Euclide Megarien, traduits de Grec en François, & augmentez de plusieurs figures & demonstrations, avec la corrections des erreurs commises és autres traductions, by Pierre Mardele, Lyon, MDCXLV (1645).
  2. ^ Lockwood p. ix

Pranala luar[sunting | sunting sumber]