Relasi ekuivalensi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Loncat ke navigasi Loncat ke pencarian
52 relasi ekuivalensi pada himpunan 5-anggota yang digambarkan dengan matriks biner 5x5 (kotak yang berwarna, termasuk yang abu-abu, melambangkan 1; kotak putih melambangkan 0.) Indeks kolom dan baris dari kotak yang berwarna adalah anggota yang berkaitan, sementara warna yang dibedakan, selain abu-abu, mengindikasikan kelas ekuivalensi (masing-masing kotak abu-abu merupakan kelas ekuivalensinya sendiri).

Dalam matematika, relasi ekuivalensi adalah relasi biner yang bersifat reflektif, simetris dan transitif. Relasi "sama dengan" merupakan contoh dasar dari relasi ekuivalensi, di mana untuk sembarang objek a, b, dan c:

  • a = a (sifat reflektif),
  • jika a = b maka b = a (sifat simetris), dan
  • jika a = b dan b = c maka a = c (sifat transitif).

Sebagai akibat dari sifat reflektif, simetris, dan transitif, semua relasi ekuivalensi dapat menghasilkan partisi dari himpunan pendasar menjadi kelas-kelas ekuivalensi yang saling lepas. Dua anggota dari suatu himpunan disebut ekuivalen jika dan hanya jika mereka merupakan anggota kelas ekuivalensi yang sama.

Notasi[sunting | sunting sumber]

Berbagai notasi digunakan untuk menunjukkan bahwa dua anggota himpunan a dan b bersifat ekuivalen terhadap relasi ekuivalen R; biasanya "a ~ b" dan "ab", yang digunakan ketika R bersifat tersirat, dan variasi "a ~R b", "aR b", atau "aRb" untuk menyebutkan R secara tersurat. Sifat tidak ekuivalen bisa ditulis "ab" atau "".

Definisi[sunting | sunting sumber]

Suatu relasi biner ~ pada himpunan X disebut merupakan relasi ekuivalensi jika dan hanya jika bersifat reflektif, simetris dan transitif. Artinya, untuk semua a, b dan c dalam X:

X bersama dengan relasi ~ disebut sebuah setoid. Kelas ekuivalensi dari di bawah ~, dilambangkan dengan , didefinisikan sebagai .

Pranala luar[sunting | sunting sumber]