Vektor satuan

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Lompat ke: navigasi, cari

Vektor satuan adalah suatu vektor yang ternormalisasi, yang berarti panjangnya bernilai 1. Umumnya dituliskan dalam menggunakan topi (bahasa Inggris: Hat), sehingga: dibaca "u-topi" ('u-hat').

Suatu vektor ternormalisasi dari suatu vektor u bernilai tidak nol, adalah suatu vektor yang berarah sama dengan u, yaitu:

di mana ||u|| adalah norma (atau panjang atau besar) dari u. Isitilah vektor ternormalisasi kadang-kadang digunakan sebagai sinonim dari vektor satuan. Dalam gaya penulisan yang lain (tidak menggunakan huruf tebal) adalah dengan menggunakan panah di atas suatu variabel, yaitu

Di sini adalah vektor yang dimaksud dan adalah besarnya.

Vektor[sunting | sunting sumber]

Posisi vektor[sunting | sunting sumber]

Panjang vektor[sunting | sunting sumber]

Berada di
Panjang vektor a dalam posisi adalah
Panjang vektor b dalam posisi adalah
Panjang vektor c dalam posisi dan adalah
Berada di
Panjang vektor a dalam posisi adalah
Panjang vektor b dalam posisi adalah
Panjang vektor c dalam posisi dan adalah

Vektor satuan[sunting | sunting sumber]

Operasi aljabar pada vektor[sunting | sunting sumber]

  • Penjumlahan dan pengurangan

terdiri dari 2 aturan jenis yaitu aturan segitiga dan jajar genjang

  • Perkalian
  1. skalar dengan vektor

Jika k skalar tak nol dan vektor maka vektor

  1. titik dua vektor

Jika vektor dan vektor maka

  1. titik dua vektor dengan membentuk sudut

Jika dan vektor tak nol dan sudut diantara vektor dan maka perkalian skalar vektor dan adalah =

  1. silang dua vektor

Jika vektor dan vektor maka

Sifat operasi aljabar pada vektor[sunting | sunting sumber]

Hubungan vektor dengan vektor lain[sunting | sunting sumber]

  • Perkalian titik
Saling tegak lurus

Jika tegak lurus antara vektor dengan vektor maka

Sejajar

Jika vektor sejajar dengan vektor maka

  • Perkalian silang
Saling tegak lurus

Jika tegak lurus antara vektor dengan vektor maka

Jika maka dua vektor tersebut searah

Jika maka vektor saling berlawanan arah

Sejajar

Jika vektor sejajar dengan vektor maka

Sudut dua vektor[sunting | sunting sumber]

Jika vektor dan vektor sudut yang dapat dibentuk dari kedua vektor tersebut adalah

Panjang proyeksi dan proyeksi vektor[sunting | sunting sumber]

Panjang proyeksi vektor pada vektor adalah
Proyeksi vektor pada vektor adalah

Perbandingan[sunting | sunting sumber]

Aturan jajar genjang
Posisi vektor
Berada di
Berada di
Satu garis
Perbandingan posisi dalam adalah m:n
Perbandingan posisi luar adalah m:-n