Persamaan diferensial biasa

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Lintasan peluru yang ditembakkan dari meriam mengikuti kurva yang ditentukan lewat persamaan diferensial parsial yang diturunkan dari hukum kedua Newton

Persamaan diferensial biasa adalah persamaan diferensial di mana fungsi yang tidak diketahui (variabel terikat) adalah fungsi dari variabel bebas tunggal. Dalam bentuk paling sederhana fungsi yang tidak diketahui ini adalah fungsi riil atau fungsi kompleks, namun secara umum bisa juga berupa fungsi vektor maupun matriks. Lebih jauh lagi, persamaan diferensial biasa digolongkan berdasarkan orde tertinggi dari turunan terhadap variabel terikat yang muncul dalam persamaan tersebut.

Contoh sederhana adalah hukum gerak kedua Newton, yang menghasilkan persamaan diferensial

m \frac{d^2 x(t)}{dt^2} = F(x(t)),\,

untuk gerakan partikel dengan massa konstan m. Pada umumnya, gaya F tergantung kepada posisi partikel x(t) pada waktu t, dan demikian fungsi yang tidak diketahui x(t) muncul pada kedua ruas persamaan diferensial, seperti yang diindikasikan dalam notasi F(x(t)).

Persamaan diferensial biasa dibedakan dengan persamaan diferensial parsial, yang melibatkan turunan parsial dari beberapa variabel.

Persamaan diferensial biasa muncul dalam berbagai keadaan, termasuk geometri, mekanika, astronomi dan pemodelan populasi. Banyak matematikawan ternama telah mempelajari persamaan diferensial dan memberi sumbangan terhadap bidang studi ini, termasuk Isaac Newton, Gottfried Leibniz, keluarga Bernoulli, Riccati, Clairaut, d'Alembert dan Euler.

Dalam kasus persamaan tersebut linier, persamaan diferensial biasa dapat dipecahkan dengan metode analitik. Malangnya, kebanyakan persamaan diferensial nonlinier, dan kecuali sebagian kecil, tidak dapat dipecahkan secara eksak. Pemecahan hampiran dapat dicapai menggunakan komputer.