Teorema Taylor

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Fungsi eksponensial y=e^x (garis merah kontinu) dan polinomial Taylor orde empat di sekitar titik asal (garis hijau putus-putus)
Topik dalam kalkulus

Teorema dasar
Limit fungsi
Kekontinuan
Kalkulus vektor
Kalkulus matriks
Teorema nilai purata

Turunan

Kaidah darab
Kaidah hasil-bagi
Kaidah rantai
Turunan implisit
Teorema Taylor
Laju berhubungan
Tabel turunan

Integral

Tabel integral
Integral takwajar
Pengintegralan dengan:
bagian per bagian, cakram, silinder, substitusi,
substitusi trigonometri,
pecahan parsial

Dalam kalkulus, teorema Taylor memberikan barisan pendekatan sebuah fungsi yang diferensiabel pada sebuah titik menggunakan suku banyak (polinomial). Koefisien polinomial tersebut hanya tergantung pada turunan fungsi pada titik yang bersangkutan. Teorema ini juga memberikan estimasi besarnya galat dari pendekatan itu. Teorema ini mendapat nama dari matematikawan Brook Taylor, yang menyatakannya pada tahun 1712, meskipun hasilnya sudah ditemukan pertama kali tahun 1671 oleh James Gregory

Teorema Taylor dalam satu variabel[sunting | sunting sumber]

Teorema Taylor menyatakan sembarang fungsi mulus dapat dihampiri dengan polinomial. Contoh sederhana penerapan teorema Taylor adalah hampiran fungsi eksponensial ex di dekat x = 0:

 \textrm{e}^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}.

Hampiran ini dinamakan hampiran Taylor orde ke-n' terhadap ex karena menghampiri nilai fungsi eksponensial menggunakan polinomial derajat n. Hampiran ini hanya berlaku untuk x mendekati nol, dan bila x bergerak menjauhi nol, hampiran ini menjadi semakin buruk. Kualitas hampiran dinyatakan oleh suku sisa:

R_n(x) =  \textrm{e}^x - \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}\right).

Lebih umum lagi, teorema Taylor berlaku untuk setiap fungsi yang dapat diturunkan ƒ, dengan hampiran untuk x di dekat titik a, dalam bentuk:

f(x)\approx f(a) + f'(a)(x-a) +\frac{f''(a)}{2!}(x-a)^2 +\dots \frac{f^{(n)}(a)}{n!}(x-a)^n.

Suku sisa adalah perbedaan antara fungsi dan polinomial hampirannya:


R_n(x) = f(x) - \left(f(a) + f'(a)(x-a) +\frac{f''(a)}{2!}(x-a)^2 +\dots \frac{f^{(n)}(a)}{n!}(x-a)^n\right).

Meskipun rumus eksplisit untuk suku sisa ini jarang digunakan, teorema Taylor juga memberikan estimasi nilai sisanya. Dengan kata lain, untuk x cukup dekat terhadap a, suku sisa haruslah cukup kecil. Teorema Taylor memberikan informasi persis seberapa kecil suku sisa tersebut.

Pernyataan[sunting | sunting sumber]

Pernyataan cermat teorema ini adalah sebagai berikut: bila n ≥ 0 adalah bilangan bulat dan f adalah fungsi yang terturunkan kontinu pada selang tertutup [a, x] dan terturunkan n + 1 kali pada selang terbuka (a, x), maka

 f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f^{(2)}(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x).

Di sini n! melambangkan n faktorial dan Rn(x) adalah suku sisa, melambangkan beda antara polinomial Taylor derajat-n terhadap fungsi asli. Suku sisa Rn(x) tergantung pada x, dan kecil bila x cukup dekat terhadap a. Ada beberapa pernyataan untuk suku sisa ini.

Bentuk Lagrange[1] dari suku sisa menyatakan bahwa terdapat bilangan ξ antara a dan x sedemikian sehingga


  R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.

Ini mengungkapkan teorema Taylor sebagai perampatan teorema nilai rata-rata. Sebenarnya, teorema nilai rata-rata digunakan untuk membuktikan teorema Taylor dengan suku sisa bentuk Lagrange.

Bentuk Cauchy[2] suku sisa menyatakan bahwa terdapat bilangan ξ antara a dan x sehingga


  R_n(x) = \frac{f^{(n+1)}(\xi)}{n!}(x-\xi)^n(x-a).

Secara umum, bila G(t) adalah fungsi kontinu pada selang tertutup [a,x], yang terturunkan dengan turunan tidak nol pada (a,x), maka ada suatu bilangan ξ antara a dan x sehingga


  R_n(x) = \frac{f^{(n+1)}(\xi)}{n!}(x-\xi)^n\cdot\frac{G(x)-G(a)}{G'(\xi)}.

Ini mengungkapkan teorema Taylor sebagai generalisasi teorema nilai rata-rata Cauchy.

Bentuk di atas terbatas pada fungsi riil. Namun bentuk integral[3] dari suku sisa juga berlaku untuk fungsi kompleks, yaitu:


  R_n(x) = \int_a^x \frac{f^{(n+1)} (t)}{n!} (x - t)^n \, dt,

dengan syarat, seperti yang biasa ditemui, fn kontinu mutlak dalam [a, x]. Ini menunjukkan teorema ini sebagai perampatan teorema dasar kalkulus.

Secara umum, suatu fungsi tidak perlu sama dengan deret Taylor-nya, karena mungkin saja deret Taylor tersebut tidak konvergen, atau konvergen menuju fungsi yang berbeda. Namun, untuk banyak fungsi f(x), kita dapat menunjukkan bahwa suku sisa Rn mendekati nol saat n mendekati ∞. Fungsi-fungsi tersebut dapat dinyatakan sebagai deret Taylor pada persekitaran titik a, dan disebut sebagai fungsi analitik.

Estimasi suku sisa[sunting | sunting sumber]

Versi umum teorema Taylor lainnya berlaku pada selang (ar, a + r) tempat variabel x mengambil nilainya. Perumusan teorema ini memiliki keuntungan bahwa mungkin mengendalikan ukuran suku-suku sisa, dan dengan demikian kita dapat menghitung hampiran fungsi yang sahih pada seluruh selang, dengan batas yang cermat untuk mutu hampirannya.

Versi yang cermat untuk teorema Taylor dalam bentuk ini adalah sebagai berikut. Misalkan ƒ adalah fungsi yang terturunkan kontinu n kali pada selang tertutup [a - r, a + r] dan terturunkan n + 1 kali pada selang terbuka (ar, a + r). Bila ada konstanta positif riil Mn sedemikian sehingga |ƒ(n+1)(x)| ≤ Mn untuk semua x(ar, a + r), maka

 f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f^{(2)}(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x),

di mana fungsi sisa Rn memenuhi ketidaksamaan (dikenal sebagai estimasi Cauchy)

 |R_n(x)| \le M_n \frac{r^{n+1}}{(n+1)!}

untuk semua x(ar, a + r). Ini disebut sebagai estimasi seragam galat pada polinomial Taylor yang terpusat pada a, karena ini berlaku seragam untuk setiap x dalam selang.

Bila ƒ adalah fungsi mulus pada [ar, a + r], maka konstanta positif Mn ada untuk tiapn = 1, 2, 3, … sedemikian sehingga | ƒ(n+1)(x)| ≤ Mn untuk semua x(ar, a + r). Tambahan lagi, jika mungkin memilih konstanta ini, sehingga

 M_n\frac{r^{n+1}}{(n+1)!} \rightarrow 0 as n \rightarrow \infin ,\!

maka ƒ adalah fungsi analitik pada (ar, a + r). Secara khusus, suku sisa pada hampiran Taylor, Rn(x) cenderung menuju nol secara seragam saat n→∞. Dengan kata lain, fungsi analitik adalah limit seragam dari polinomial Taylornya pada sebuah selang.

Pembuktian: satu variabel[sunting | sunting sumber]

Berikut adalah bukti teorema Taylor dengan suku sisa integral[4]

Teorema dasar kalkulus menyatakan bahwa

\int_a^x \, f'(t) \, dt=f(x)-f(a),

yang dapat disusun ulang menjadi:

f(x)=f(a)+ \int_a^x \, f'(t) \, dt.

Sekarang kita dapat melihat bahwa penerapan integrasi parsial menghasilkan

 \begin{align} 
f(x) &= f(a)+xf'(x)-af'(a)-\int_a^x \, tf''(t) \, dt \\
&= f(a)+\int_a^x \, xf''(t) \,dt+xf'(a)-af'(a)-\int_a^x \, tf''(t) \, dt \\
&= f(a)+(x-a)f'(a)+\int_a^x \, (x-t)f''(t) \, dt.
\end{align}

Persamaan pertama diperoleh dengan memisalkan u=f'(t)\, dandv = dt; persamaan kedua didapatkan dengan mencatat bahwa \int_a^x \, xf''(t) \,dt = xf'(x)-xf'(a); yang ketiga didapatkan dengan mengeluarkan faktor yang sama.

Bila integrasi parsial ini diteruskan didapatkan:

f(x)=f(a)+(x-a)f'(a)+ \frac 1 2 (x-a)^2f''(a) + \frac 1 2 \int_a^x \, (x-t)^2f'''(t) \, dt.

Dengan mengulangi proses ini, kita dapat menurunkan teorema Taylor untuk nilai n yang lebih tinggi.

Proses ini dapat diformalkan dengan menerapkan teknik induksi matematika. Jadi misalkan teorema Taylor berlaku unutk n tertentu, yaitu, misalkan


  f(x) = f(a)
  + \frac{f'(a)}{1!}(x - a)
  + \cdots
  + \frac{f^{(n)}(a)}{n!}(x - a)^n
  + \int_a^x \frac{f^{(n+1)} (t)}{n!} (x - t)^n \, dt. \qquad(*)

Kita dapat menulis ulang integral dengan integrasi parsial. Sebuah antiturunan (xt)n sebagai fungsi dari t diberikan sebagai −(xt)n+1 / (n + 1), sehingga

 \int_a^x \frac{f^{(n+1)} (t)}{n!} (x - t)^n \, dt
 {} = - \left[ \frac{f^{(n+1)} (t)}{(n+1)n!} (x - t)^{n+1} \right]_a^x + \int_a^x \frac{f^{(n+2)} (t)}{(n+1)n!} (x - t)^{n+1} \, dt
 {} = \frac{f^{(n+1)} (a)}{(n+1)!} (x - a)^{n+1} + \int_a^x \frac{f^{(n+2)} (t)}{(n+1)!} (x - t)^{n+1} \, dt.

Mensubstitusikan ini dalam (*) membuktikan teorema Taylor untuk n + 1, dan karenanya untuk semua n bilangan bulat non-negatif.

Suku sisa dalam bentuk Lagrange dapat diturunkan dengan teorema nilai rata-rata untuk integral dengan cara berikut:


  R_n = \int_a^x \frac{f^{(n+1)} (t)}{n!} (x - t)^n \, dt =f^{(n+1)}(\xi) \int_a^x \frac{(x - t)^n }{n!}  \, dt,

di mana ξ adalah suatu bilangan dari selang [a, x]. Integral terakhir dapat dievaluasi langsung, yang menghasilkan


  R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.

Secara lebih umum, untuk tiap fungsi G(t), teorema nilai rata-rata menjamin eksistensi ξ dalam selang [a,x] yang memenuhi


  R_n = \int_a^x \frac{f^{(n+1)} (t)}{n!} (x - t)^n \frac{G'(t)}{G'(t)}\, dt =\frac{f^{(n+1)}(\xi)}{n!} (x-\xi)^n \frac{1}{G'(\xi)} \int_a^x G'(t)  \, dt
 = \frac{f^{(n+1)}(\xi)}{n!} (x-\xi)^n \cdot \frac{G(x)-G(a)}{G'(\xi)}.

Catatan kaki[sunting | sunting sumber]

  1. ^ Klein (1998) 20.3; Apostol (1967) 7.7.
  2. ^ Apostol (1967) 7.7.
  3. ^ Apostol (1967) 7.5.
  4. ^ Perhatikan bahwa bukti ini mensyaratkan bahwa fn kontinu mutlak pada[a, x] sehingga teorema dasar kalkulus berlaku. Kecuali pada bagian akhir saat teorema nilai rata-rata diterapkan, keterdiferensialan fn tidak perlu diasumsikan, karena kekontinan mutlak menyiratkan keterdiferensialan hampir di mana saja, serta kesahihan teorema dasar kalkulus, dengan syarat integral yang terlibat dipahami sebagai integral Lebesgue. Sebagai akibatnya, bentuk integral suku sisa berlaku dengan pelemahan asumsi terhadap f.

Rujukan[sunting | sunting sumber]

Pranala luar[sunting | sunting sumber]