Matematika: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
[revisi tidak terperiksa][revisi terperiksa]
Konten dihapus Konten ditambahkan
←Mengganti halaman dengan 'Mengubah Pecahan Ke Bentuk Pecahan Biasa Mengubah bentuk persen ke bentuk pecahan biasa di lakukan dgn cara membagi nya dgn 100% dan menyederhanakan nya. CONTOH ...'
Tag: mengosongkan halaman [ * ]
Aldo samulo (bicara | kontrib)
Menolak perubahan terakhir (oleh 182.0.101.139) dan mengembalikan revisi 5163041 oleh Hazmat2
Baris 1: Baris 1:
[[Berkas:Euclid.jpg |thumb |[[Euklides]], matematikawan Yunani, abad ke-3 SM, seperti yang dilukiskan oleh [[Raffaello Sanzio]] di dalam detail ini dari ''[[Sekolah Athena]]''.<ref>Tidak ada perupaan atau penjelasan tentang wujud fisik Euklides yang dibuat selama masa hidupnya yang masih bertahan sebagai kekunoan. Oleh karena itu, penggambaran Euklides di dalam karya seni bergantung pada daya khayal seorang seniman (''lihat [[Euklides]]'').</ref>]]
Mengubah Pecahan Ke Bentuk Pecahan Biasa
Mengubah bentuk persen ke bentuk pecahan biasa di lakukan dgn cara membagi nya dgn 100% dan menyederhanakan nya.


'''Matematika''' (dari [[bahasa Yunani]]: ''μαθηματικά'' - ''mathēmatiká'') adalah studi [[besaran]], [[struktur]], [[ruang]], dan [[kalkulus|perubahan]]. Para [[matematikawan]] mencari berbagai [[pola]],<ref>[[Lynn Steen]] (29 April 1988). ''[[The Science of Patterns]]'' [[Science (jurnal)|Jurnal Science]], 240: 611–616. dan diikhtisarkan di [http://www.ascd.org/portal/site/ascd/template.chapter/menuitem.1889bf0176da7573127855b3e3108a0c/?chapterMgmtId=f97433df69abb010VgnVCM1000003d01a8c0RCRD Association for Supervision and Curriculum Development.], ascd.org</ref><ref>[[Keith Devlin]], ''Mathematics: The Science of Patterns: The Search for Order in Life, Mind and the Universe'' (Scientific American Paperback Library) 1996, ISBN 978-0-7167-5047-5</ref> merumuskan [[konjektur]] baru, dan membangun kebenaran melalui [[metode deduksi]] yang [[Kekakuan matematika|kaku]] dari [[aksioma|aksioma-aksioma]] dan [[definisi|definisi-definisi]] yang bersesuaian.<ref>Jourdain.</ref>
CONTOH :
Ubah lah ke bentuk pecahan biasa yang paling sederhana.
a. 25% =...
jawab :
25% = 25 per 100 = 25 : 25 per 100 : 25 = 1 per 4
jadi : 25% = 1 per 4


Terdapat perselisihan tentang apakah objek-objek matematika seperti [[bilangan]] dan [[titik (geometri)|titik]] hadir secara alami, atau hanyalah buatan manusia. Seorang matematikawan [[Benjamin Peirce]] menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting".<ref>Peirce, p.97</ref> Di pihak lain, [[Albert Einstein]] menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."<ref name=certain/>
b. 40% = ...

jawab:
Melalui penggunaan [[penalaran]] [[logika]] dan [[abstraksi (matematika)|abstraksi]], matematika berkembang dari [[pencacahan]], [[kalkulasi|perhitungan]], [[pengukuran]], dan pengkajian sistematis terhadap [[bangun (geometri)|bangun]] dan [[gerak|pergerakan]] benda-benda fisika. Matematika praktis telah menjadi kegiatan manusia sejak adanya [[Sejarah matematika|rekaman tertulis]]. [[Logika|Argumentasi kaku]] pertama muncul di dalam [[Matematika Yunani]], terutama di dalam karya [[Euklides]], ''[[Elemen Euklides|Elemen]]''.
40% =40 per 100 = 40 : 20 per 100 :20 = 2 per 5

jadi : 40% = 2 per 5
Matematika selalu berkembang, misalnya di [[Cina]] pada tahun 300 [[Sebelum Masehi|SM]], di [[India]] pada tahun 100 [[Masehi|M]], dan di Arab pada tahun 800 M, hingga zaman [[Renaisans]], ketika temuan baru matematika berinteraksi dengan [[penemuan ilmiah]] baru yang mengarah pada peningkatan yang cepat di dalam laju penemuan matematika yang berlanjut hingga kini.<ref>Eves</ref>

Kini, matematika digunakan di seluruh dunia sebagai alat penting di berbagai bidang, termasuk [[ilmu alam]], [[teknik]], [[kedokteran]]/[[medis]], dan [[ilmu sosial]] seperti [[ekonomi]], dan [[psikologi]]. [[Matematika terapan]], cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang-bidang lain, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang-kadang mengarah pada pengembangan disiplin-disiplin ilmu yang sepenuhnya baru, seperti [[statistika]] dan [[teori permainan]].

Para matematikawan juga bergulat di dalam [[matematika murni]], atau matematika untuk perkembangan matematika itu sendiri, tanpa adanya penerapan di dalam pikiran, meskipun penerapan praktis yang menjadi latar munculnya matematika murni ternyata seringkali ditemukan terkemudian.<ref>Peterson</ref>

== Etimologi ==
Kata "matematika" berasal dari [[bahasa Yunani Kuno]] μάθημα (''máthēma''), yang berarti ''pengkajian'', ''pembelajaran'', ''ilmu'', yang ruang lingkupnya menyempit, dan arti teknisnya menjadi "pengkajian matematika", bahkan demikian juga pada zaman kuno. Kata sifatnya adalah μαθηματικός (''mathēmatikós''), ''berkaitan dengan pengkajian'', atau ''tekun belajar'', yang lebih jauhnya berarti ''matematis''. Secara khusus, {{polytonic|μαθηματικὴ τέχνη}} (''mathēmatikḗ tékhnē''), di dalam [[bahasa Latin]] ''ars mathematica'', berarti ''seni matematika''.

Bentuk jamak sering dipakai di dalam [[bahasa Inggris]], seperti juga di dalam [[bahasa Perancis]] ''les mathématiques'' (dan jarang digunakan sebagai turunan bentuk tunggal ''la mathématique''), merujuk pada bentuk jamak bahasa Latin yang cenderung netral ''mathematica'' ([[Cicero]]), berdasarkan bentuk jamak bahasa Yunani τα μαθηματικά (''ta mathēmatiká''), yang dipakai [[Aristotle]], yang terjemahan kasarnya berarti "segala hal yang matematis".<ref>''[[The Oxford Dictionary of English Etymology]]'', ''[[Oxford English Dictionary]]''</ref> Tetapi, di dalam bahasa Inggris, kata benda ''mathematics'' mengambil bentuk tunggal bila dipakai sebagai kata kerja. Di dalam ragam percakapan, matematika kerap kali disingkat sebagai ''math'' di Amerika Utara dan ''maths'' di tempat lain.

== Sejarah ==
[[Berkas:Quipu.png|thumb|left|Sebuah [[quipu]], yang dipakai oleh [[Kekaisaran Inca|Inca]] untuk mencatatkan bilangan.]]
{{utama|Sejarah matematika}}

[[Evolusi]] matematika dapat dipandang sebagai sederetan [[abstraksi (matematika)|abstraksi]] yang selalu bertambah banyak, atau perkataan lainnya perluasan pokok masalah. Abstraksi mula-mula, yang juga berlaku pada banyak binatang<ref>S. Dehaene, G. Dehaene-Lambertz and L. Cohen, Abstract representations of numbers in the animal and human brain, ''Trends in Neuroscience'', Vol. 21 (8), Aug 1998, 355-361. http://dx.doi.org/10.1016/S0166-2236(98)01263-6.</ref>, adalah tentang [[bilangan]]: pernyataan bahwa dua apel dan dua jeruk (sebagai contoh) memiliki jumlah yang sama.

Selain mengetahui cara [[pencacahan|mencacah]] objek-objek ''fisika'', manusia [[prasejarah]] juga mengenali cara mencacah besaran ''abstrak'', seperti [[waktu]] — [[hari]], [[musim]], [[tahun]]. [[Aritmetika dasar]] ([[penjumlahan]], [[pengurangan]], [[perkalian]], dan [[pembagian]]) mengikuti secara alami.

Langkah selanjutnya memerlukan [[menulis|penulisan]] atau sistem lain untuk mencatatkan bilangan, semisal [[tali]] atau dawai bersimpul yang disebut [[quipu]] dipakai oleh bangsa [[Inca]] untuk menyimpan data numerik. [[Sistem bilangan]] ada banyak dan bermacam-macam, bilangan tertulis yang pertama diketahui ada di dalam naskah warisan [[Mesir Kuno]] di [[Kerajaan Tengah Mesir]], [[Lembaran Matematika Rhind]].
[[Berkas:maya.svg|thumb|[[Sistem bilangan Maya]]]]

Penggunaan terkuno matematika adalah di dalam [[perdagangan]], [[pengukuran tanah]], [[lukisan|pelukisan]], dan pola-pola [[menenun|penenunan]] dan pencatatan waktu dan tidak pernah berkembang luas hingga tahun 3000 SM ke muka ketika orang [[Babilonia]] dan [[Mesir Kuno]] mulai menggunakan [[aritmetika]], [[aljabar]], dan [[geometri]] untuk penghitungan [[pajak]] dan urusan keuangan lainnya, bangunan dan konstruksi, dan [[astronomi]].<ref>Kline 1990, Chapter 1.</ref> Pengkajian matematika yang sistematis di dalam kebenarannya sendiri dimulai pada zaman Yunani Kuno antara tahun 600 dan 300 SM.

Matematika sejak saat itu segera berkembang luas, dan terdapat interaksi bermanfaat antara matematika dan [[sains]], menguntungkan kedua belah pihak. Penemuan-penemuan matematika dibuat sepanjang sejarah dan berlanjut hingga kini. Menurut Mikhail B. Sevryuk, pada Januari 2006 terbitan [[Bulletin of the American Mathematical Society]], "Banyaknya makalah dan buku yang dilibatkan di dalam basis data [[Mathematical Reviews]] sejak 1940 (tahun pertama beroperasinya MR) kini melebihi 1,9 juta, dan melebihi 75 ribu artikel ditambahkan ke dalam basis data itu tiap tahun. Sebagian besar karya di samudera ini berisi [[teorema]] matematika baru beserta [[Pembuktian Matematika|bukti-buktinya]]."<ref>Sevryuk</ref>

== Ilham, matematika murni dan terapan, dan estetika ==
[[Berkas:GodfreyKneller-IsaacNewton-1689.jpg|left|thumb|Sir [[Isaac Newton]] (1643-1727), seorang [[penemu]] [[kalkulus|kalkulus infinitesimal]].]]
{{utama|Keindahan matematika}}

Matematika muncul pada saat dihadapinya masalah-masalah yang rumit yang melibatkan kuantitas, struktur, ruang, atau perubahan. Mulanya masalah-masalah itu dijumpai di dalam [[perdagangan]], [[pengukuran tanah]], dan kemudian [[astronomi]]; kini, semua ilmu pengetahuan menganjurkan masalah-masalah yang dikaji oleh para matematikawan, dan banyak masalah yang muncul di dalam matematika itu sendiri. Misalnya, seorang [[fisikawan]] [[Richard Feynman]] menemukan [[rumus integral lintasan]] [[mekanika kuantum]] menggunakan paduan nalar matematika dan wawasan fisika, dan [[teori dawai]] masa kini, teori ilmiah yang masih berkembang yang berupaya membersatukan empat [[Interaksi dasar|gaya dasar alami]], terus saja mengilhami matematika baru.<ref>{{cite book | title = The Feynman Integral and Feynman's Operational Calculus | author = Johnson, Gerald W.; Lapidus, Michel L. | publisher = [[Oxford University Press]] | year = 2002}}</ref>

Beberapa matematika hanya bersesuaian di dalam wilayah yang mengilhaminya, dan diterapkan untuk memecahkan masalah lanjutan di wilayah itu. Tetapi seringkali matematika diilhami oleh bukti-bukti di satu wilayah ternyata bermanfaat juga di banyak wilayah lainnya, dan menggabungkan persediaan umum konsep-konsep matematika. Fakta yang menakjubkan bahwa matematika "paling murni" sering beralih menjadi memiliki terapan praktis adalah apa yang [[Eugene Wigner]] memanggilnya sebagai "[[Ketidakefektifan Matematika tak ternalar di dalam Ilmu Pengetahuan Alam]]".<ref>[[Eugene Wigner]], 1960, "[http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html The Unreasonable Effectiveness of Mathematics in the Natural Sciences,]" ''[[Komunikasi pada Matematika Murni dan Terapan]]'' '''13'''(1): 1–14.</ref>

Seperti di sebagian besar wilayah pengkajian, ledakan pengetahuan di zaman ilmiah telah mengarah pada pengkhususan di dalam matematika. Satu perbedaan utama adalah di antara [[matematika murni]] dan [[matematika terapan]]: sebagian besar matematikawan memusatkan penelitian mereka hanya pada satu wilayah ini, dan kadang-kadang pilihan ini dibuat sedini perkuliahan program [[sarjana]] mereka. Beberapa wilayah matematika terapan telah digabungkan dengan tradisi-tradisi yang bersesuaian di luar matematika dan menjadi disiplin yang memiliki hak tersendiri, termasuk [[statistika]], [[riset operasi]], dan [[ilmu komputer]].

Mereka yang berminat kepada matematika seringkali menjumpai suatu aspek estetika tertentu di banyak matematika. Banyak matematikawan berbicara tentang ''keanggunan'' matematika, [[estetika]] yang tersirat, dan [[keindahan]] dari dalamnya. [[Kesederhanaan]] dan keumumannya dihargai. Terdapat keindahan di dalam kesederhanaan dan keanggunan [[bukti (matematika)|bukti]] yang diberikan, semisal bukti [[Euclid]] yakni bahwa terdapat tak-terhingga banyaknya [[bilangan prima]], dan di dalam [[metode numerik]] yang anggun bahwa perhitungan laju, yakni [[transformasi Fourier cepat]]. [[G. H. Hardy]] di dalam ''[[A Mathematician's Apology]]'' mengungkapkan keyakinan bahwa penganggapan estetika ini, di dalamnya sendiri, cukup untuk mendukung pengkajian matematika murni.<ref>{{cite book | title = A Mathematician's Apology | author = Hardy, G. H. | publisher = Cambridge University Press | year = 1940}}</ref>

Para matematikawan sering bekerja keras menemukan bukti teorema yang anggun secara khusus, pencarian [[Paul Erdős]] sering berkutat pada sejenis pencarian akar dari "[[Alkitab]]" di mana [[Tuhan]] telah menuliskan bukti-bukti kesukaannya.<ref>{{cite book | title = Proof and Other Dilemmas: Mathematics and Philosophy | author = Gold, Bonnie; Simons, Rogers A. | publisher = MAA | year = 2008}}</ref><ref>{{cite book | title = Proofs from the Book | author = Aigner, Martin; Ziegler, Gunter M. | publisher = Springer | year = 2001}}</ref> Kepopularan [[matematika rekreasi]] adalah isyarat lain bahwa kegembiraan banyak dijumpai ketika seseorang mampu memecahkan soal-soal matematika.

== Notasi, bahasa, dan kekakuan ==
[[Berkas:Leonhard Euler 2.jpg|right|thumb|Leonhard Euler. Mungkin seorang matematikawan yang terbanyak menghasilkan temuan sepanjang masa]]
{{utama|Notasi matematika}}

Sebagian besar notasi matematika yang digunakan saat ini tidaklah ditemukan hingga abad ke-16.<ref>[http://jeff560.tripod.com/mathsym.html Penggunaan Aneka Lambang Matematika Terdini] (memuat banyak referensi yang lebih jauh)</ref> Pada abad ke-18, [[Leonhard Euler|Euler]] bertanggung jawab atas banyak notasi yang digunakan saat ini. Notasi modern membuat matematika lebih mudah bagi para profesional, tetapi para pemula sering menemukannya sebagai sesuatu yang mengerikan. Terjadi pemadatan yang amat sangat: sedikit lambang berisi informasi yang kaya. Seperti [[notasi musik]], notasi matematika modern memiliki tata kalimat yang kaku dan menyandikan informasi yang barangkali sukar bila dituliskan menurut cara lain.

[[Bahasa]] matematika dapat juga terkesan sukar bagi para pemula. Kata-kata seperti ''atau'' dan ''hanya'' memiliki arti yang lebih presisi daripada di dalam percakapan sehari-hari. Selain itu, kata-kata semisal ''[[himpunan terbuka|terbuka]]'' dan ''[[lapangan (matematika)|lapangan]]'' memberikan arti khusus matematika. [[Jargon matematika]] termasuk istilah-istilah teknis semisal ''[[homomorfisme]]'' dan ''[[keterintegralan|terintegralkan]]''. Tetapi ada alasan untuk notasi khusus dan jargon teknis ini: matematika memerlukan presisi yang lebih dari sekadar percakapan sehari-hari. Para matematikawan menyebut presisi bahasa dan logika ini sebagai "kaku" (''rigor'').

[[Berkas:Infinity symbol.svg||thumb|left|Lambang [[ketakhinggaan]] '''∞''' di dalam beberapa gaya sajian.]]
[[Kekakuan matematika|Kaku]] secara mendasar adalah tentang [[bukti matematika]]. Para matematikawan ingin teorema mereka mengikuti aksioma-aksioma dengan maksud penalaran yang sistematik. Ini untuk mencegah "[[teorema]]" yang salah ambil, didasarkan pada praduga kegagalan, di mana banyak contoh pernah muncul di dalam sejarah subjek ini.<ref>Lihatlah ''[[bukti palsu]]'' untuk contoh sederhana dari hal-hal yang bisa salah di dalam bukti formal. [[Teorema empat warna#Sejarah|sejarah Teorema Empat Warna]] berisi contoh-contoh bukti-bukti salah yang tanpa sengaja diterima oleh para matematikawan lainnya pada saat itu.</ref> Tingkat kekakuan diharapkan di dalam matematika selalu berubah-ubah sepanjang waktu: [[bangsa Yunani]] menginginkan dalil yang terperinci, namun pada saat itu metode yang digunakan [[Isaac Newton]] kuranglah kaku. Masalah yang melekat pada definisi-definisi yang digunakan Newton akan mengarah kepada munculnya analisis saksama dan bukti formal pada abad ke-19. Kini, para matematikawan masih terus beradu argumentasi tentang [[bukti berbantuan-komputer]]. Karena perhitungan besar sangatlah sukar diperiksa, bukti-bukti itu mungkin saja tidak cukup kaku.<ref> Ivars Peterson, ''Wisatawan Matematika'', Freeman, 1988, ISBN 0-7167-1953-3. p. 4 "Sedikit keluhan akan ketidakmampuan program komputer memeriksa secara wajar," (merujuk kepada bukti Haken-Apple terhadap Teorema Empat Warna). </ref>

[[Aksioma]] menurut pemikiran tradisional adalah "kebenaran yang menjadi bukti dengan sendirinya", tetapi konsep ini memicu persoalan. Pada tingkatan formal, sebuah aksioma hanyalah seutas dawai [[logika simbolik|lambang]], yang hanya memiliki makna tersirat di dalam konteks semua rumus yang terturunkan dari suatu [[sistem aksioma]]. Inilah tujuan [[program Hilbert]] untuk meletakkan semua matematika pada sebuah basis aksioma yang kokoh, tetapi menurut [[Teorema ketaklengkapan Gödel]] tiap-tiap sistem aksioma (yang cukup kuat) memiliki rumus-rumus yang [[kebebasan (logika matematika)|tidak dapat ditentukan]]; dan oleh karena itulah suatu [[aksiomatisasi]] terakhir di dalam matematika adalah mustahil. Meski demikian, matematika sering dibayangkan (di dalam konteks formal) tidak lain kecuali [[teori himpunan]] di beberapa aksiomatisasi, dengan pengertian bahwa tiap-tiap pernyataan atau bukti matematika dapat dikemas ke dalam rumus-rumus teori himpunan.<ref> Patrick Suppes, ''Axiomatic Set Theory'', Dover, 1972, ISBN 0-486-61630-4. p. 1, "Di antara banyak cabang matematika modern, teori himpunan menduduki tempat yang unik: dengan sedikit pengecualian, entitas-entitas yang dikaji dan dianalisis di dalam matematika dapat dipandang sebagai himpunan khusus atau kelas-kelas objek tertentu." </ref>

== Matematika sebagai ilmu pengetahuan ==
[[Berkas:Carl Friedrich Gauss.jpg|right|thumb|[[Carl Friedrich Gauss]], menganggap dirinya sebagai "pangerannya para matematikawan", dan mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".]]

[[Carl Friedrich Gauss]] mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".<ref>Waltershausen</ref> Di dalam bahasa aslinya, Latin ''Regina Scientiarum'', juga di dalam [[bahasa Jerman]] ''Königin der Wissenschaften'', kata yang bersesuaian dengan ''ilmu pengetahuan'' berarti (lapangan) pengetahuan. Jelas, inipun arti asli di dalam bahasa Inggris, dan tiada keraguan bahwa matematika di dalam konteks ini adalah sebuah ilmu pengetahuan. Pengkhususan yang mempersempit makna menjadi ilmu pengetahuan ''alam'' adalah di masa terkemudian. Bila seseorang memandang [[ilmu pengetahuan]] hanya terbatas pada dunia fisika, maka matematika, atau sekurang-kurangnya [[matematika murni]], bukanlah ilmu pengetahuan.

[[Albert Einstein]] menyatakan bahwa ''"sejauh hukum-hukum matematika merujuk kepada kenyataan, maka mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan.''"<ref name=certain>Einstein, p. 28. Kutipan ini adalah jawaban Einstein terhadap pertanyaan: "betapa mungkin bahwa matematika, di samping yang lain tentunya, menjadi ciptaan pemikiran manusia yang terbebas dari pengalaman, begitu luar biasa bersesuaian dengan objek-objek kenyataan?" Dia juga memperhatikan ''[[Keefektifan tak ternalar Matematika di dalam Ilmu Pengetahuan Alam]]''.</ref>

Banyak filsuf yakin bahwa matematika tidaklah [[keterpalsuan|terpalsukan]] berdasarkan percobaan, dan dengan demikian bukanlah ilmu pengetahuan per definisi [[Karl Popper]].<ref>{{cite book | title = Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists | author = Shasha, Dennis Elliot; Lazere, Cathy A. | publisher = Springer | year = 1998 | page = 228}}</ref> Tetapi, di dalam karya penting tahun 1930-an tentang logika matematika menunjukkan bahwa matematika tidak bisa direduksi menjadi logika, dan Karl Popper menyimpulkan bahwa "sebagian besar teori matematika, seperti halnya [[fisika]] dan [[biologi]], adalah [[hipotesis|hipotetis]]-[[deduktif]]: oleh karena itu matematika menjadi lebih dekat ke ilmu pengetahuan alam yang hipotesis-hipotesisnya adalah konjektur (dugaan), lebih daripada sebagai hal yang baru."<ref>Popper 1995, p. 56</ref> Para bijak bestari lainnya, sebut saja [[Imre Lakatos]], telah menerapkan satu versi [[pemalsuan]] kepada matematika itu sendiri.

Sebuah tinjauan alternatif adalah bahwa lapangan-lapangan ilmiah tertentu (misalnya [[fisika teoretis]]) adalah matematika dengan aksioma-aksioma yang ditujukan sedemikian sehingga bersesuaian dengan kenyataan. Faktanya, seorang fisikawan teoretis, [[J. M. Ziman]], mengajukan pendapat bahwa ilmu pengetahuan adalah ''pengetahuan umum'' dan dengan demikian matematika termasuk di dalamnya.<ref>Ziman</ref> Di beberapa kasus, matematika banyak saling berbagi dengan ilmu pengetahuan fisika, sebut saja penggalian dampak-dampak logis dari beberapa anggapan. [[Intuisi (pengetahuan)|Intuisi]] dan [[percobaan]] juga berperan penting di dalam perumusan [[konjektur]]-konjektur, baik itu di matematika, maupun di ilmu-ilmu pengetahuan (lainnya).

[[Matematika percobaan]] terus bertumbuh kembang, mengingat kepentingannya di dalam matematika, kemudian komputasi dan simulasi memainkan peran yang semakin menguat, baik itu di ilmu pengetahuan, maupun di matematika, melemahkan objeksi yang mana matematika tidak menggunakan [[metode ilmiah]]. Di dalam bukunya yang diterbitkan pada 2002 ''[[A New Kind of Science]]'', [[Stephen Wolfram]] berdalil bahwa matematika komputasi pantas untuk digali secara [[empirik]] sebagai lapangan ilmiah di dalam haknya/kebenarannya sendiri.

Pendapat-pendapat para matematikawan terhadap hal ini adalah beraneka macam. Banyak matematikawan merasa bahwa untuk menyebut wilayah mereka sebagai ilmu pengetahuan sama saja dengan menurunkan kadar kepentingan sisi estetikanya, dan sejarahnya di dalam tujuh [[seni liberal]] tradisional; yang lainnya merasa bahwa pengabaian pranala ini terhadap ilmu pengetahuan sama saja dengan memutar-mutar mata yang buta terhadap fakta bahwa antarmuka antara matematika dan penerapannya di dalam ilmu pengetahuan dan [[rekayasa]] telah mengemudikan banyak pengembangan di dalam matematika.

Satu jalan yang dimainkan oleh perbedaan sudut pandang ini adalah di dalam perbincangan filsafat apakah matematika ''diciptakan'' (seperti di dalam seni) atau ''ditemukan'' (seperti di dalam ilmu pengetahuan). Adalah wajar bagi [[universitas]] bila dibagi ke dalam bagian-bagian yang menyertakan departemen ''Ilmu Pengetahuan dan Matematika'', ini menunjukkan bahwa lapangan-lapangan itu dipandang bersekutu tetapi mereka tidak seperti dua sisi keping uang logam. Pada tataran praktisnya, para matematikawan biasanya dikelompokkan bersama-sama para ilmuwan pada tingkatan kasar, tetapi dipisahkan pada tingkatan akhir. Ini adalah salah satu dari banyak perkara yang diperhatikan di dalam [[filsafat matematika]].

Penghargaan matematika umumnya dipelihara supaya tetap terpisah dari kesetaraannya dengan ilmu pengetahuan. Penghargaan yang adiluhung di dalam matematika adalah [[Fields Medal]] (medali lapangan),<ref>"''Fields Medal kini disepakati paling dikenal dan paling berpengaruh di dalam matematika.''" Monastyrsky</ref><ref>Riehm</ref> dimulakan pada 1936 dan kini diselenggarakan tiap empat tahunan. Penghargaan ini sering dianggap setara dengan [[Hadiah Nobel]] ilmu pengetahuan.

[[Wolf Prize in Mathematics]], dilembagakan pada 1978, mengakui masa prestasi, dan penghargaan internasional utama lainnya, [[Hadiah Abel]], diperkenalkan pada 2003. Ini dianugerahkan bagi ruas khusus karya, dapat berupa pembaharuan, atau penyelesaian masalah yang terkemuka di dalam lapangan yang mapan.

Sebuah daftar terkenal berisikan 23 [[masalah terbuka]], yang disebut "[[masalah Hilbert]]", dihimpun pada 1900 oleh matematikawan Jerman [[David Hilbert]]. Daftar ini meraih persulangan yang besar di antara para matematikawan, dan paling sedikit sembilan dari masalah-masalah itu kini terpecahkan.

Sebuah daftar baru berisi tujuh masalah penting, berjudul "[[Masalah Hadiah Milenium]]", diterbitkan pada 2000. Pemecahan tiap-tiap masalah ini berhadiah [[Dollar Amerika Serikat|US$]] 1 juta, dan hanya satu ([[hipotesis Riemann]]) yang mengalami penggandaan di dalam masalah-masalah Hilbert.

== Bidang-bidang matematika ==
[[Berkas:Abacus 6.png|right|thumb|Sebuah [[sempoa]], alat hitung sederhana yang dipakai sejak zaman kuno.]]

Disiplin-disiplin utama di dalam matematika pertama muncul karena kebutuhan akan perhitungan di dalam perdagangan, untuk memahami hubungan antarbilangan, untuk mengukur tanah, dan untuk meramal peristiwa [[astronomi]]. Empat kebutuhan ini secara kasar dapat dikaitkan dengan pembagian-pembagian kasar matematika ke dalam pengkajian besaran, struktur, ruang, dan perubahan (yakni [[aritmetika]], [[aljabar]], [[geometri]], dan [[analisis matematika|analisis]]). Selain pokok bahasan itu, juga terdapat pembagian-pembagian yang dipersembahkan untuk pranala-pranala penggalian dari jantung matematika ke lapangan-lapangan lain: ke [[logika matematika|logika]], ke [[teori himpunan]] ([[dasar-dasar matematika|dasar]]), ke matematika empirik dari aneka macam ilmu pengetahuan ([[matematika terapan]]), dan yang lebih baru adalah ke pengkajian kaku akan [[ketakpastian]].

=== Besaran ===
Pengkajian besaran dimulakan dengan [[bilangan]], pertama [[bilangan asli]] dan [[bilangan bulat]] ("semua bilangan") dan operasi aritmetika di ruang bilangan itu, yang dipersifatkan di dalam [[aritmetika]]. Sifat-sifat yang lebih dalam dari bilangan bulat dikaji di dalam [[teori bilangan]], dari mana datangnya hasil-hasil popular seperti [[Teorema Terakhir Fermat]]. Teori bilangan juga memegang dua masalah tak terpecahkan: [[konjektur prima kembar]] dan [[konjektur Goldbach]].

Karena sistem bilangan dikembangkan lebih jauh, bilangan bulat diakui sebagai [[himpunan bagian]] dari [[bilangan rasional]] ("[[Pecahan (matematika)|pecahan]]"). Sementara bilangan pecahan berada di dalam [[bilangan real]], yang dipakai untuk menyajikan besaran-besaran [[fungsi kontinu|kontinu]]. Bilangan real diperumum menjadi [[bilangan kompleks]]. Inilah langkah pertama dari jenjang bilangan yang beranjak menyertakan [[kuarternion]] dan [[oktonion]]. Perhatian terhadap bilangan asli juga mengarah pada [[bilangan transfinit]], yang memformalkan konsep pencacahan [[ketakhinggaan]]. Wilayah lain pengkajian ini adalah ukuran, yang mengarah pada [[bilangan kardinal]] dan kemudian pada konsepsi ketakhinggaan lainnya: [[bilangan aleph]], yang memungkinkan perbandingan bermakna tentang ukuran himpunan-himpunan besar ketakhinggaan.

:{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="20"
| <math>1, 2, 3\,\!</math> || <math>-2, -1, 0, 1, 2\,\!</math> || <math> -2, \frac{2}{3}, 1.21\,\!</math> || <math>-e, \sqrt{2}, 3, \pi\,\!</math> || <math>2, i, -2+3i, 2e^{i\frac{4\pi}{3}}\,\!</math>
|-
| [[Bilangan asli]]|| [[Bilangan bulat]] || [[Bilangan rasional]] || [[Bilangan real]] || [[Bilangan kompleks]]
|}

===Ruang===<!-- This section is linked from [[List of basic mathematics topics]] -->
Pengkajian ruang bermula dengan [[geometri]] – khususnya, [[geometri euclid]]. [[Trigonometri]] memadukan ruang dan bilangan, dan mencakupi [[Teorema pitagoras]] yang terkenal. Pengkajian modern tentang ruang memperumum gagasan-gagasan ini untuk menyertakan geometri berdimensi lebih tinggi, [[geometri tak-euclid]] (yang berperan penting di dalam [[relativitas umum]]) dan [[topologi]]. Besaran dan ruang berperan penting di dalam [[geometri analitik]], [[geometri diferensial]], dan [[geometri aljabar]]. Di dalam geometri diferensial terdapat konsep-konsep [[buntelan serat]] dan kalkulus [[lipatan]].

Di dalam geometri aljabar terdapat penjelasan objek-objek geometri sebagai himpunan penyelesaian persamaan [[polinom]], memadukan konsep-konsep besaran dan ruang, dan juga pengkajian [[grup topologi]], yang memadukan struktur dan ruang. [[Grup lie]] biasa dipakai untuk mengkaji ruang, struktur, dan perubahan. [[Topologi]] di dalam banyak percabangannya mungkin menjadi wilayah pertumbuhan terbesar di dalam matematika abad ke-20, dan menyertakan [[konjektur poincaré]] yang telah lama ada dan [[teorema empat warna]], yang hanya "berhasil" dibuktikan dengan komputer, dan belum pernah dibuktikan oleh manusia secara manual.

:{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="15"
| [[Berkas:Illustration to Euclid's proof of the Pythagorean theorem.svg|96px]] || [[Berkas:Sine cosine plot.svg|96px]] || [[Berkas:Hyperbolic triangle.svg|96px]] || [[Berkas:Torus.png|96px]] || [[Berkas:Mandel_zoom_07_satellite.jpg|96px]]
|-
|[[Geometri]] || [[Trigonometri]] || [[Geometri diferensial]] || [[Topologi]] || [[Fraktal|Geometri fraktal]]
|}

=== Perubahan ===
Memahami dan menjelaskan perubahan adalah tema biasa di dalam [[ilmu pengetahuan alam]], dan [[kalkulus]] telah berkembang sebagai alat yang penuh-daya untuk menyeledikinya. [[Fungsi (matematika)|Fungsi-fungsi]] muncul di sini, sebagai konsep penting untuk menjelaskan besaran yang berubah. Pengkajian kaku tentang [[bilangan real]] dan fungsi-fungsi berpeubah real dikenal sebagai [[analisis real]], dengan [[analisis kompleks]] lapangan yang setara untuk [[bilangan kompleks]].

[[Hipotesis Riemann]], salah satu masalah terbuka yang paling mendasar di dalam matematika, dilukiskan dari analisis kompleks. [[Analisis fungsional]] memusatkan perhatian pada [[ruang]] fungsi (biasanya berdimensi tak-hingga). Satu dari banyak terapan analisis fungsional adalah [[mekanika kuantum]].

Banyak masalah secara alami mengarah pada hubungan antara besaran dan laju perubahannya, dan ini dikaji sebagai [[persamaan diferensial]]. Banyak gejala di alam dapat dijelaskan menggunakan [[sistem dinamika]]; [[teori kekacauan]] mempertepat jalan-jalan di mana banyak sistem ini memamerkan perilaku [[sistem deterministik (matematika)|deterministik]] yang masih saja belum terdugakan.

{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="20"
| [[Berkas:Integral as region under curve.svg|96px]] || [[Berkas:Vector field.svg|96px]] || [[Berkas:Airflow-Obstructed-Duct.png|96px]] || [[Berkas:Limitcycle.jpg|96px]] || [[Berkas:Lorenz attractor.svg|96px]] || [[Berkas:Princ_Argument_C1.svg|96px]]
|-
| [[Kalkulus]] || [[Kalkulus vektor]]|| [[Persamaan diferensial]] || [[Sistem dinamika]] || [[Teori chaos]] || [[Analisis kompleks]]
|}

=== Struktur ===
Banyak objek matematika, semisal [[Himpunan (matematika)|himpunan]] bilangan dan [[fungsi (matematika)|fungsi]], memamerkan struktur bagian dalam. Sifat-sifat struktural objek-objek ini diselidiki di dalam pengkajian [[grup (matematika)|grup]], [[gelanggang (matematika)|gelanggang]], [[lapangan (matematika)|lapangan]] dan sistem abstrak lainnya, yang mereka sendiri adalah objek juga. Ini adalah lapangan [[aljabar abstrak]]. Sebuah konsep penting di sini yakni [[Vektor (geometri)|vektor]], diperumum menjadi [[ruang vektor]], dan dikaji di dalam [[aljabar linear]]. Pengkajian vektor memadukan tiga wilayah dasar matematika: besaran, struktur, dan ruang. [[Kalkulus vektor]] memperluas lapangan itu ke dalam wilayah dasar keempat, yakni perubahan. [[Kalkulus tensor]] mengkaji [[kesetangkupan]] dan perilaku vektor yang di[[rotasi]]. Sejumlah masalah kuno tentang [[Kompas dan konstruksi garis lurus]] akhirnya terpecahkan oleh [[Teori galois]].

:{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="15"
| [[Berkas:Elliptic curve simple.svg|96px]] || [[Berkas:Rubik's cube.svg|96px]] || [[Berkas:Group diagdram D6.svg|96px]] || [[Berkas:Lattice of the divisibility of 60.svg|96px]]
|-
| [[Teori bilangan]] || [[Aljabar abstrak]] || [[Teori grup]] || [[Teori orde]]
|}

=== Dasar dan filsafat ===
Untuk memeriksa [[dasar-dasar matematika]], lapangan [[logika matematika]] dan [[teori himpunan]] dikembangkan, juga [[teori kategori]] yang masih dikembangkan. Kata majemuk "krisis dasar" mejelaskan pencarian dasar kaku untuk matematika yang mengambil tempat pada [[dasawarsa]] 1900-an sampai 1930-an.<ref>Luke Howard Hodgkin & Luke Hodgkin, ''A History of Mathematics'', Oxford University Press, 2005.</ref> Beberapa ketaksetujuan tentang dasar-dasar matematika berlanjut hingga kini. Krisis dasar dipicu oleh sejumlah silang sengketa pada masa itu, termasuk [[kontroversi teori Cantor|kontroversi teori himpunan Cantor]] dan [[kontroversi Brouwer-Hilbert]].

Logika matematika diperhatikan dengan meletakkan matematika pada sebuah kerangka kerja [[aksiom]]atis yang kaku, dan mengkaji hasil-hasil kerangka kerja itu. Logika matematika adalah rumah bagi [[Teori ketaklengkapan Gödel|Teori ketaklengkapan kedua Gödel]], mungkin hasil yang paling dirayakan di dunia logika, yang (secara informal) berakibat bahwa suatu [[sistem formal]] yang berisi aritmetika dasar, jika ''suara'' (maksudnya semua teorema yang dapat dibuktikan adalah benar), maka ''tak-lengkap'' (maksudnya terdapat teorema sejati yang tidak dapat dibuktikan ''di dalam sistem itu'').

Gödel menunjukkan cara mengonstruksi, [[sembarang]] kumpulan aksioma bilangan teoretis yang diberikan, sebuah pernyataan formal di dalam logika yaitu sebuah bilangan sejati-suatu fakta teoretik, tetapi tidak mengikuti aksioma-aksioma itu. Oleh karena itu, tiada sistem formal yang merupakan aksiomatisasi sejati teori bilangan sepenuhnya. Logika modern dibagi ke dalam [[teori rekursi]], [[teori model]], dan [[teori pembuktian]], dan terpaut dekat dengan [[ilmu komputer]] [[ilmu komputer teoretis|teoretis]].

:{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="15"
| <math> p \Rightarrow q \,</math>|| [[Berkas:Venn A intersect B.svg|128px]] || [[Berkas:Commutative diagram for morphism.svg|96px]]
|-
| [[Logika matematika]] || [[Teori himpunan]] || [[Teori kategori]] ||
|}

=== Matematika diskret ===
[[Matematika diskret]] adalah nama lazim untuk lapangan matematika yang paling berguna di dalam [[ilmu komputer teoretis]]. Ini menyertakan [[teori komputabilitas (komputasi)|teori komputabilitas]], [[teori kompleksitas komputasional]], dan [[teori informasi]]. Teori komputabilitas memeriksa batasan-batasan berbagai model teoretis komputer, termasuk model yang dikenal paling berdaya - [[Mesin turing]].

Teori kompleksitas adalah pengkajian traktabilitas oleh komputer; beberapa masalah, meski secara teoretis terselesaikan oleh komputer, tetapi cukup mahal menurut konteks waktu dan ruang, tidak dapat dikerjakan secara praktis, bahkan dengan cepatnya kemajuan [[perangkat keras]] komputer. Pamungkas, teori informasi memusatkan perhatian pada banyaknya data yang dapat disimpan pada media yang diberikan, dan oleh karenanya berkenaan dengan konsep-konsep semisal [[pemadatan data|pemadatan]] dan [[Entropi (teori informasi|entropi]].

Sebagai lapangan yang relatif baru, matematika diskret memiliki sejumlah masalah terbuka yang mendasar. Yang paling terkenal adalah masalah "[[masalah P = NP|P=NP?]]", salah satu [[Masalah Hadiah Milenium]].<ref>[http://www.claymath.org/millennium/P_vs_NP/ Clay Mathematics Institute] P=NP</ref>

:{| style="border:1px solid #ddd; text-align:center; margin: auto;" cellspacing="15"
| <math>\begin{matrix} (1,2,3) & (1,3,2) \\ (2,1,3) & (2,3,1) \\ (3,1,2) & (3,2,1) \end{matrix}</math> || [[Berkas:DFAexample.svg|96px]] || [[Berkas:Caesar3.svg|96px]] || [[Berkas:6n-graf.svg|96px]]
|-
| [[Kombinatorika]] || [[Teori komputasi]] || [[Kriptografi]] || [[Teori graf]]
|}

=== Matematika terapan ===
[[Matematika terapan]] berkenaan dengan penggunaan alat matematika abstrak guna memecahkan masalah-masalah konkret di dalam [[ilmu pengetahuan]], [[bisnis]], dan wilayah lainnya. Sebuah lapangan penting di dalam matematika terapan adalah [[statistika]], yang menggunakan [[teori peluang]] sebagai alat dan membolehkan penjelasan, analisis, dan peramalan gejala di mana [[probabilitas|peluang]] berperan penting. Sebagian besar percobaan, survey, dan pengkajian pengamatan memerlukan statistika. (Tetapi banyak [[statistikawan]], tidak menganggap mereka sendiri sebagai matematikawan, melainkan sebagai kelompok sekutu.)

[[Analisis numerik]] menyelidiki metode komputasional untuk memecahkan masalah-masalah matematika secara efisien yang biasanya terlalu lebar bagi kapasitas numerik manusia, analisis numerik melibatkan pengkajian [[galat pemotongan]] atau sumber-sumber galat lain di dalam komputasi.

<center>
<gallery>
Berkas:Gravitation space source.png | <center>[[Fisika matematika]]</center>
Berkas:BernoullisLawDerivationDiagram.svg | <center>[[Mekanika fluida]]</center>
Berkas:Composite trapezoidal rule illustration small.svg | <center>[[Analisis numerik]]</center>
Berkas:Maximum boxed.png | <center>[[Optimisasi (matematika)|Optimisasi]]</center>
Berkas:Two red dice 01.svg | <center>[[Teori peluang]]</center>
Berkas:Oldfaithful3.png | <center>[[Statistika]]</center>
Berkas:Market Data Index NYA on 20050726 202628 UTC.png | <center>[[Matematika keuangan]]</center>
Berkas:Arbitrary-gametree-solved.svg | <center>[[Teori permainan]]</center>
Berkas:Signal transduction v1.png | <center>[[Biologi matematika]]</center>
Berkas:Ch4-structure.png | <center>[[Kimia matematika]]</center>
Berkas:GDP PPP Per Capita IMF 2008.png | <center>[[Ekonomi matematika]]</center>
Berkas:Simple feedback control loop2.svg| <center>[[Teori kontrol]]</center>
</gallery>
</center>

== Lihat pula ==
{{portal}}
<div style="-moz-column-count:3; column-count:3;">
* [[Daftar simbol matematika]]
* [[Definisi matematika]]
* [[Dyscalculia]]
* [[Daftar topik matematika dasar]]
* [[Daftar topik matematika]]
* [[Mathematical anxiety]]
* [[Permainan matematis]]
* [[Model matematika]]
* [[Masalah matematika]]
* [[Struktur matematika]]
* [[Matematika dan seni]]
* [[Lomba matematika]]
* [[Pendidikan matematika]]
* [[Portal:Matematika|Portal Matematika]]
* [[Pola]]
* [[Filsafat matematika]]
* [[Abacus]]
* [[Tulang Napier]], [[Jangka sorong]]
* [[Penggaris]] dan [[Kompas]]
* [[Perhitungan biasa]]
* [[Kalkulator]] dan [[komputer]]
* [[Bahasa pemrograman]]
* [[Sistem komputer aljabar]]
* [[Notasi sederhana Internet]]
* [[Analisis statistik]] [[software]]
** [[SPSS]]
** [[SAS]]
** [http://www.r-project.org R]
</div>

== Catatan ==
{{reflist|2}}

== Referensi ==
{{refbegin|2}}
* Benson, Donald C., ''The Moment of Proof: Mathematical Epiphanies'', Oxford University Press, USA; New Ed edition (December 14, 2000). ISBN 0-19-513919-4.
* [[Carl B. Boyer|Boyer, Carl B.]], ''A History of Mathematics'', Wiley; 2 edition (March 6, 1991). ISBN 0-471-54397-7. — A concise history of mathematics from the Concept of Number to contemporary Mathematics.
* Courant, R. and H. Robbins, ''What Is Mathematics? : An Elementary Approach to Ideas and Methods'', Oxford University Press, USA; 2 edition (July 18, 1996). ISBN 0-19-510519-2.
* [[Philip J. Davis|Davis, Philip J.]] and [[Reuben Hersh|Hersh, Reuben]], ''[[The Mathematical Experience]]''. Mariner Books; Reprint edition (January 14, 1999). ISBN 0-395-92968-7. — A gentle introduction to the world of mathematics.
* {{cite journal
| last = Einstein
| first = Albert
| authorlink = Albert Einstein
| title = Sidelights on Relativity (Geometry and Experience)
| publisher = P. Dutton., Co
| year = 1923}}
* Eves, Howard, ''An Introduction to the History of Mathematics'', Sixth Edition, Saunders, 1990, ISBN 0-03-029558-0.
* Gullberg, Jan, ''Mathematics — From the Birth of Numbers''. W. W. Norton & Company; 1st edition (October 1997). ISBN 0-393-04002-X. — An encyclopedic overview of mathematics presented in clear, simple language.
* Hazewinkel, Michiel (ed.), ''[[Encyclopaedia of Mathematics]]''. Kluwer Academic Publishers 2000. — A translated and expanded version of a Soviet mathematics encyclopedia, in ten (expensive) volumes, the most complete and authoritative work available. Also in paperback and on CD-ROM, and online [http://eom.springer.de/default.htm].
* Jourdain, Philip E. B., ''The Nature of Mathematics'', in ''The World of Mathematics'', James R. Newman, editor, Dover, 2003, ISBN 0-486-43268-8.
* [[Morris Kline|Kline, Morris]], ''Mathematical Thought from Ancient to Modern Times'', Oxford University Press, USA; Paperback edition (March 1, 1990). ISBN 0-19-506135-7.
* {{cite paper|url=http://www.fields.utoronto.ca/aboutus/FieldsMedal_Monastyrsky.pdf|year=2001|title=Some Trends in Modern Mathematics and the Fields Medal|author=Monastyrsky, Michael|publisher=Canadian Mathematical Society|accessdate=2006-07-28|format=PDF}}
* [[Oxford English Dictionary]], second edition, ed. John Simpson and Edmund Weiner, Clarendon Press, 1989, ISBN 0-19-861186-2.
* ''[[The Oxford Dictionary of English Etymology]]'', 1983 reprint. ISBN 0-19-861112-9.
* Pappas, Theoni, ''The Joy Of Mathematics'', Wide World Publishing; Revised edition (June 1989). ISBN 0-933174-65-9.
* {{cite journal|title=Linear Associative Algebra|first= Benjamin|last= Peirce|journal= American Journal of Mathematics|issue= Vol. 4, No. 1/4. (1881|url= http://links.jstor.org/sici?sici=0002-9327%281881%294%3A1%2F4%3C97%3ALAA%3E2.0.CO%3B2-X|unused_data=|, pages= 97-229}} [[JSTOR]].
* Peterson, Ivars, ''Mathematical Tourist, New and Updated Snapshots of Modern Mathematics'', Owl Books, 2001, ISBN 0-8050-7159-8.
* {{cite book | last = Paulos | first = John Allen | authorlink = John Allen Paulos | year = 1996 | title = A Mathematician Reads the Newspaper | publisher = Anchor | isbn = 0-385-48254-X}}
* {{Cite book | first=Karl R. | last=Popper | authorlink=Karl Popper | title=In Search of a Better World: Lectures and Essays from Thirty Years | chapter=On knowledge | publisher=Routledge | year=1995 | isbn=0-415-13548-6}}
* {{cite journal
| last = Riehm
| first = Carl
| authorlink =
| title = The Early History of the Fields Medal
| journal = Notices of the AMS
| volume = 49
| issue = 7
| pages = 778–782
| publisher = AMS
| month = August | year = 2002
| url = http://www.ams.org/notices/200207/comm-riehm.pdf
| doi =
| id =
| accessdate = |format=PDF}}
* {{cite journal| last=Sevryuk | first=Mikhail B. | authorlink = Mikhail B. Sevryuk| year = 2006| month = January| title = Book Reviews| journal = [[Bulletin of the American Mathematical Society]]| volume = 43| issue = 1| pages = 101–109| url = http://www.ams.org/bull/2006-43-01/S0273-0979-05-01069-4/S0273-0979-05-01069-4.pdf| format = PDF| accessdate = 2006-06-24| doi = 10.1090/S0273-0979-05-01069-4}}
* {{cite book | last = Waltershausen | first = Wolfgang Sartorius von | authorlink = Wolfgang Sartorius von Waltershausen | title = Gauss zum Gedächtniss | year = 1856, repr. 1965 | publisher = Sändig Reprint Verlag H. R. Wohlwend | isbn = 3-253-01702-8 | asin = ASIN: B0000BN5SQ | url = http://www.amazon.de/Gauss-Ged%e4chtnis-Wolfgang-Sartorius-Waltershausen/dp/3253017028}}
* {{cite paper|url=http://info.med.yale.edu/therarad/summers/ziman.htm|year=1968|title=Public Knowledge:An essay concerning the social dimension of science|author= Ziman, J.M., F.R.S.}}
{{refend}}

== Pranala luar ==
{{sisterlinks|Matematika}}
<!-- {{WVS}} -->
<div class="references-small">
* [http://www.preceptorial.com/ Preceptorial] Kumpulan materi dan soal matematika SD, SMP, SMA
* [http://www.skypoint.com/members/waltzmn/Mathematics.html Sejarah Matematika]
* [http://freebookcentre.net/SpecialCat/Free-Mathematics-Books-Download.html Buku-buku matematika bebas] Kumpulan buku matematika bebas.
* [http://www.mathmotivation.com/all-applications.html Penerapan Aljabar SMA]
* [[Encyclopaedia of Mathematics]] ensiklopedia '''online''' dari [http://eom.springer.de Springer], Karya referensi pascasarjana dengan lebih dari 8.000 judul, mencerahkan hampir 50.000 gagasan di dalam matematika.
* [http://hyperphysics.phy-astr.gsu.edu/Hbase/hmat.html Situs HyperMath di Georgia State University]
* [http://www.freescience.info/mathematics.php Perpustakaan FreeScience] Bagian matematika dari perpustakaan FreeScience
* Rusin, Dave: [http://www.math-atlas.org/ ''The Mathematical Atlas'']. Panduan wisata melalui aneka macam matematika modern. (Juga dapat ditemukan [http://www.math.niu.edu/~rusin/known-math/index/index.html di sini].)
* Polyanin, Andrei: [http://eqworld.ipmnet.ru/ ''EqWorld: The World of Mathematical Equations'']. Sebuah sumber '''online''' yang memusatkan perhatian pada [[fisika matematika]] aljabar, diferensial biasa, diferensial parsial, integral, dan persamaan-persamaan matematika lainnya.
* Cain, George: [http://www.math.gatech.edu/~cain/textbooks/onlinebooks.html Buku teks Matematika '''Online'''] tersedia '''online''' secara bebas.
* [http://etext.lib.virginia.edu/DicHist/analytic/anaVII.html Matematika dan Logika: Searah matematika formal, gagasan-gagasan logis, linguistik, dan metodologis.] Di dalam ''Kamus Sejarah Gagasan.''
* [http://www-history.mcs.st-and.ac.uk/~history/ Riwayat Hidup Matematikawan]. [[Arsip Sejarah Matematika MacTutor]] sejarah ekstensif dan kutipan dari matematikawan termasyhur.
* [http://metamath.org/ ''Metamath'']. Sebuah situs dan sebuah bahasa, yang memformalkan matematika dari dasar-dasarnya.
* [http://www.nrich.maths.org/public/index.php Nrich], sebuah situs peraih hadiah bagi para siswa berusia sejak lima tahun dari [[Universitas Cambridge]]
* [http://garden.irmacs.sfu.ca Taman Masalah Terbuka], sebuah [[wiki]] dari masalah matematika terbuka
* [http://planetmath.org/ ''Planet Math'']. Sebuah ensiklopedia matematika '''online''' yang masih dibangun, memusatkan perhatian pada matematika modern. Menggunakan [[Lisensi Dokumentasi Bebas GNU|GFDL]], memungkinkan pertukaran artikel dengan Wikipedia. Menggunakan pemrograman [[TeX]].
* [http://www-math.mit.edu/daimp Beberapa aplet matematika, di [[Institut Teknologi Massachussetts|MIT]]]
* Weisstein, Eric et al.: [http://www.mathworld.com/ ''MathWorld: World of Mathematics'']. Sebuah ensiklopedia '''online''' matematika.
* Patrick Jones' [http://www.youtube.com/user/patrickJMT Tutorial Video] tentang Matematika
</div>
{{Bidang matematika}}

[[Kategori:Matematika| ]]
[[Kategori:Kata dan frasa Yunani]]

{{Link FA|ia}}
{{Link FA|ka}}
{{Link FA|la}}
{{Link FA|mk}}
{{Link FA|vo}}

[[af:Wiskunde]]
[[als:Mathematik]]
[[am:ትምህርተ ሂሳብ]]
[[an:Matematicas]]
[[ang:Rīmcræft]]
[[ar:رياضيات]]
[[arz:رياضيات]]
[[as:গণিত]]
[[ast:Matemátiques]]
[[ay:Jakhu]]
[[az:Riyaziyyat]]
[[ba:Математика]]
[[bar:Mathematik]]
[[bat-smg:Matematėka]]
[[be:Матэматыка]]
[[be-x-old:Матэматыка]]
[[bg:Математика]]
[[bjn:Matamatika]]
[[bn:গণিত]]
[[bo:རྩིས་རིག]]
[[bpy:গণিত]]
[[br:Matematik]]
[[bs:Matematika]]
[[bug:Matematika]]
[[ca:Matemàtiques]]
[[ceb:Matematika]]
[[ch:Matematika]]
[[ckb:بیرکاری]]
[[co:Matematica]]
[[crh:Riyaziyat]]
[[cs:Matematika]]
[[csb:Matematika]]
[[cv:Математика]]
[[cy:Mathemateg]]
[[da:Matematik]]
[[de:Mathematik]]
[[diq:Matematik]]
[[dsb:Matematika]]
[[dv:ރިޔާޟިއްޔާތު]]
[[el:Μαθηματικά]]
[[eml:Matemâtica]]
[[en:Mathematics]]
[[eo:Matematiko]]
[[es:Matemáticas]]
[[et:Matemaatika]]
[[eu:Matematika]]
[[ext:Matemáticas]]
[[fa:ریاضیات]]
[[fi:Matematiikka]]
[[fiu-vro:Matõmaatiga]]
[[fo:Støddfrøði]]
[[fr:Mathématiques]]
[[frr:Matematiik]]
[[fur:Matematiche]]
[[fy:Wiskunde]]
[[ga:Matamaitic]]
[[gan:數學]]
[[gd:Matamataig]]
[[gl:Matemáticas]]
[[gu:ગણિત]]
[[gv:Maddaght]]
[[hak:Sṳ-ho̍k]]
[[haw:Makemakika]]
[[he:מתמטיקה]]
[[hi:गणित]]
[[hif:Mathematics]]
[[hr:Matematika]]
[[ht:Matematik]]
[[hu:Matematika]]
[[hy:Մաթեմատիկա]]
[[ia:Mathematica]]
[[ie:Matematica]]
[[ig:Ọmúmú-ónúọgụgụ]]
[[io:Matematiko]]
[[is:Stærðfræði]]
[[it:Matematica]]
[[ja:数学]]
[[jbo:cmaci]]
[[jv:Matématika]]
[[ka:მათემატიკა]]
[[kab:Tusnakt]]
[[kk:Математика]]
[[kl:Matematikki]]
[[km:គណិតវិទ្យា]]
[[kn:ಗಣಿತ]]
[[ko:수학]]
[[krc:Математика]]
[[ku:Matematîk]]
[[ky:Математика]]
[[la:Mathematica]]
[[lad:Matemátika]]
[[lb:Mathematik]]
[[li:Mathematiek]]
[[lij:Matematica]]
[[lmo:Matemàtega]]
[[lo:ຄະນິດສາດ]]
[[lt:Matematika]]
[[lv:Matemātika]]
[[map-bms:Matematika]]
[[mdf:Математиксь]]
[[mg:Fanisana]]
[[mk:Математика]]
[[ml:ഗണിതം]]
[[mn:Математик]]
[[mr:गणित]]
[[ms:Matematik]]
[[mt:Matematika]]
[[mwl:Matemática]]
[[my:သင်္ချာ]]
[[myv:Математика]]
[[nah:Tlapōhualmatiliztli]]
[[nds:Mathematik]]
[[nds-nl:Wiskunde]]
[[ne:गणित]]
[[new:गणित]]
[[nl:Wiskunde]]
[[nn:Matematikk]]
[[no:Matematikk]]
[[nov:Matematike]]
[[nrm:Caltchul]]
[[nv:Ałhíʼayiiltááh]]
[[oc:Matematicas]]
[[os:Математикæ]]
[[pa:ਹਿਸਾਬ]]
[[pag:Matematiks]]
[[pl:Matematyka]]
[[pms:Matemàtica]]
[[pnb:میتھمیٹکس]]
[[ps:شمېرپوهنه]]
[[pt:Matemática]]
[[qu:Yupay yachay]]
[[ro:Matematică]]
[[roa-rup:Mathematicã]]
[[ru:Математика]]
[[rue:Математіка]]
[[sa:गणितम्]]
[[sah:Математика]]
[[sc:Matemàtica]]
[[scn:Matimàtica]]
[[sco:Mathematics]]
[[sh:Matematika]]
[[si:ගණිතය]]
[[simple:Mathematics]]
[[sk:Matematika]]
[[sl:Matematika]]
[[sm:Matematika]]
[[sn:Masvomhu]]
[[so:Xisaab]]
[[sq:Matematika]]
[[sr:Математика]]
[[srn:Sabi fu Teri]]
[[ss:Tekubala]]
[[stq:Mathematik]]
[[su:Matematika]]
[[sv:Matematik]]
[[sw:Hisabati]]
[[szl:Matymatyka]]
[[ta:கணிதம்]]
[[te:గణితము]]
[[tet:Matemátika]]
[[tg:Математика]]
[[th:คณิตศาสตร์]]
[[tk:Matematika]]
[[tl:Matematika]]
[[tpi:Ol matematik]]
[[tr:Matematik]]
[[tt:Математика]]
[[uk:Математика]]
[[ur:ریاضی]]
[[uz:Matematika]]
[[vec:Matemàtega]]
[[vi:Toán học]]
[[vo:Matemat]]
[[war:Matematika]]
[[wo:Xayma]]
[[wuu:数学]]
[[xal:Эсв]]
[[yi:מאטעמאטיק]]
[[yo:Mathimátíkì]]
[[za:Soqyoz]]
[[zh:数学]]
[[zh-classical:數學]]
[[zh-min-nan:Sò͘-ha̍k]]
[[zh-yue:數學]]

Revisi per 7 Februari 2012 02.14

Euklides, matematikawan Yunani, abad ke-3 SM, seperti yang dilukiskan oleh Raffaello Sanzio di dalam detail ini dari Sekolah Athena.[1]

Matematika (dari bahasa Yunani: μαθηματικά - mathēmatiká) adalah studi besaran, struktur, ruang, dan perubahan. Para matematikawan mencari berbagai pola,[2][3] merumuskan konjektur baru, dan membangun kebenaran melalui metode deduksi yang kaku dari aksioma-aksioma dan definisi-definisi yang bersesuaian.[4]

Terdapat perselisihan tentang apakah objek-objek matematika seperti bilangan dan titik hadir secara alami, atau hanyalah buatan manusia. Seorang matematikawan Benjamin Peirce menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting".[5] Di pihak lain, Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."[6]

Melalui penggunaan penalaran logika dan abstraksi, matematika berkembang dari pencacahan, perhitungan, pengukuran, dan pengkajian sistematis terhadap bangun dan pergerakan benda-benda fisika. Matematika praktis telah menjadi kegiatan manusia sejak adanya rekaman tertulis. Argumentasi kaku pertama muncul di dalam Matematika Yunani, terutama di dalam karya Euklides, Elemen.

Matematika selalu berkembang, misalnya di Cina pada tahun 300 SM, di India pada tahun 100 M, dan di Arab pada tahun 800 M, hingga zaman Renaisans, ketika temuan baru matematika berinteraksi dengan penemuan ilmiah baru yang mengarah pada peningkatan yang cepat di dalam laju penemuan matematika yang berlanjut hingga kini.[7]

Kini, matematika digunakan di seluruh dunia sebagai alat penting di berbagai bidang, termasuk ilmu alam, teknik, kedokteran/medis, dan ilmu sosial seperti ekonomi, dan psikologi. Matematika terapan, cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang-bidang lain, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang-kadang mengarah pada pengembangan disiplin-disiplin ilmu yang sepenuhnya baru, seperti statistika dan teori permainan.

Para matematikawan juga bergulat di dalam matematika murni, atau matematika untuk perkembangan matematika itu sendiri, tanpa adanya penerapan di dalam pikiran, meskipun penerapan praktis yang menjadi latar munculnya matematika murni ternyata seringkali ditemukan terkemudian.[8]

Etimologi

Kata "matematika" berasal dari bahasa Yunani Kuno μάθημα (máthēma), yang berarti pengkajian, pembelajaran, ilmu, yang ruang lingkupnya menyempit, dan arti teknisnya menjadi "pengkajian matematika", bahkan demikian juga pada zaman kuno. Kata sifatnya adalah μαθηματικός (mathēmatikós), berkaitan dengan pengkajian, atau tekun belajar, yang lebih jauhnya berarti matematis. Secara khusus, μαθηματικὴ τέχνη (mathēmatikḗ tékhnē), di dalam bahasa Latin ars mathematica, berarti seni matematika.

Bentuk jamak sering dipakai di dalam bahasa Inggris, seperti juga di dalam bahasa Perancis les mathématiques (dan jarang digunakan sebagai turunan bentuk tunggal la mathématique), merujuk pada bentuk jamak bahasa Latin yang cenderung netral mathematica (Cicero), berdasarkan bentuk jamak bahasa Yunani τα μαθηματικά (ta mathēmatiká), yang dipakai Aristotle, yang terjemahan kasarnya berarti "segala hal yang matematis".[9] Tetapi, di dalam bahasa Inggris, kata benda mathematics mengambil bentuk tunggal bila dipakai sebagai kata kerja. Di dalam ragam percakapan, matematika kerap kali disingkat sebagai math di Amerika Utara dan maths di tempat lain.

Sejarah

Sebuah quipu, yang dipakai oleh Inca untuk mencatatkan bilangan.

Evolusi matematika dapat dipandang sebagai sederetan abstraksi yang selalu bertambah banyak, atau perkataan lainnya perluasan pokok masalah. Abstraksi mula-mula, yang juga berlaku pada banyak binatang[10], adalah tentang bilangan: pernyataan bahwa dua apel dan dua jeruk (sebagai contoh) memiliki jumlah yang sama.

Selain mengetahui cara mencacah objek-objek fisika, manusia prasejarah juga mengenali cara mencacah besaran abstrak, seperti waktuhari, musim, tahun. Aritmetika dasar (penjumlahan, pengurangan, perkalian, dan pembagian) mengikuti secara alami.

Langkah selanjutnya memerlukan penulisan atau sistem lain untuk mencatatkan bilangan, semisal tali atau dawai bersimpul yang disebut quipu dipakai oleh bangsa Inca untuk menyimpan data numerik. Sistem bilangan ada banyak dan bermacam-macam, bilangan tertulis yang pertama diketahui ada di dalam naskah warisan Mesir Kuno di Kerajaan Tengah Mesir, Lembaran Matematika Rhind.

Sistem bilangan Maya

Penggunaan terkuno matematika adalah di dalam perdagangan, pengukuran tanah, pelukisan, dan pola-pola penenunan dan pencatatan waktu dan tidak pernah berkembang luas hingga tahun 3000 SM ke muka ketika orang Babilonia dan Mesir Kuno mulai menggunakan aritmetika, aljabar, dan geometri untuk penghitungan pajak dan urusan keuangan lainnya, bangunan dan konstruksi, dan astronomi.[11] Pengkajian matematika yang sistematis di dalam kebenarannya sendiri dimulai pada zaman Yunani Kuno antara tahun 600 dan 300 SM.

Matematika sejak saat itu segera berkembang luas, dan terdapat interaksi bermanfaat antara matematika dan sains, menguntungkan kedua belah pihak. Penemuan-penemuan matematika dibuat sepanjang sejarah dan berlanjut hingga kini. Menurut Mikhail B. Sevryuk, pada Januari 2006 terbitan Bulletin of the American Mathematical Society, "Banyaknya makalah dan buku yang dilibatkan di dalam basis data Mathematical Reviews sejak 1940 (tahun pertama beroperasinya MR) kini melebihi 1,9 juta, dan melebihi 75 ribu artikel ditambahkan ke dalam basis data itu tiap tahun. Sebagian besar karya di samudera ini berisi teorema matematika baru beserta bukti-buktinya."[12]

Ilham, matematika murni dan terapan, dan estetika

Sir Isaac Newton (1643-1727), seorang penemu kalkulus infinitesimal.

Matematika muncul pada saat dihadapinya masalah-masalah yang rumit yang melibatkan kuantitas, struktur, ruang, atau perubahan. Mulanya masalah-masalah itu dijumpai di dalam perdagangan, pengukuran tanah, dan kemudian astronomi; kini, semua ilmu pengetahuan menganjurkan masalah-masalah yang dikaji oleh para matematikawan, dan banyak masalah yang muncul di dalam matematika itu sendiri. Misalnya, seorang fisikawan Richard Feynman menemukan rumus integral lintasan mekanika kuantum menggunakan paduan nalar matematika dan wawasan fisika, dan teori dawai masa kini, teori ilmiah yang masih berkembang yang berupaya membersatukan empat gaya dasar alami, terus saja mengilhami matematika baru.[13]

Beberapa matematika hanya bersesuaian di dalam wilayah yang mengilhaminya, dan diterapkan untuk memecahkan masalah lanjutan di wilayah itu. Tetapi seringkali matematika diilhami oleh bukti-bukti di satu wilayah ternyata bermanfaat juga di banyak wilayah lainnya, dan menggabungkan persediaan umum konsep-konsep matematika. Fakta yang menakjubkan bahwa matematika "paling murni" sering beralih menjadi memiliki terapan praktis adalah apa yang Eugene Wigner memanggilnya sebagai "Ketidakefektifan Matematika tak ternalar di dalam Ilmu Pengetahuan Alam".[14]

Seperti di sebagian besar wilayah pengkajian, ledakan pengetahuan di zaman ilmiah telah mengarah pada pengkhususan di dalam matematika. Satu perbedaan utama adalah di antara matematika murni dan matematika terapan: sebagian besar matematikawan memusatkan penelitian mereka hanya pada satu wilayah ini, dan kadang-kadang pilihan ini dibuat sedini perkuliahan program sarjana mereka. Beberapa wilayah matematika terapan telah digabungkan dengan tradisi-tradisi yang bersesuaian di luar matematika dan menjadi disiplin yang memiliki hak tersendiri, termasuk statistika, riset operasi, dan ilmu komputer.

Mereka yang berminat kepada matematika seringkali menjumpai suatu aspek estetika tertentu di banyak matematika. Banyak matematikawan berbicara tentang keanggunan matematika, estetika yang tersirat, dan keindahan dari dalamnya. Kesederhanaan dan keumumannya dihargai. Terdapat keindahan di dalam kesederhanaan dan keanggunan bukti yang diberikan, semisal bukti Euclid yakni bahwa terdapat tak-terhingga banyaknya bilangan prima, dan di dalam metode numerik yang anggun bahwa perhitungan laju, yakni transformasi Fourier cepat. G. H. Hardy di dalam A Mathematician's Apology mengungkapkan keyakinan bahwa penganggapan estetika ini, di dalamnya sendiri, cukup untuk mendukung pengkajian matematika murni.[15]

Para matematikawan sering bekerja keras menemukan bukti teorema yang anggun secara khusus, pencarian Paul Erdős sering berkutat pada sejenis pencarian akar dari "Alkitab" di mana Tuhan telah menuliskan bukti-bukti kesukaannya.[16][17] Kepopularan matematika rekreasi adalah isyarat lain bahwa kegembiraan banyak dijumpai ketika seseorang mampu memecahkan soal-soal matematika.

Notasi, bahasa, dan kekakuan

Leonhard Euler. Mungkin seorang matematikawan yang terbanyak menghasilkan temuan sepanjang masa

Sebagian besar notasi matematika yang digunakan saat ini tidaklah ditemukan hingga abad ke-16.[18] Pada abad ke-18, Euler bertanggung jawab atas banyak notasi yang digunakan saat ini. Notasi modern membuat matematika lebih mudah bagi para profesional, tetapi para pemula sering menemukannya sebagai sesuatu yang mengerikan. Terjadi pemadatan yang amat sangat: sedikit lambang berisi informasi yang kaya. Seperti notasi musik, notasi matematika modern memiliki tata kalimat yang kaku dan menyandikan informasi yang barangkali sukar bila dituliskan menurut cara lain.

Bahasa matematika dapat juga terkesan sukar bagi para pemula. Kata-kata seperti atau dan hanya memiliki arti yang lebih presisi daripada di dalam percakapan sehari-hari. Selain itu, kata-kata semisal terbuka dan lapangan memberikan arti khusus matematika. Jargon matematika termasuk istilah-istilah teknis semisal homomorfisme dan terintegralkan. Tetapi ada alasan untuk notasi khusus dan jargon teknis ini: matematika memerlukan presisi yang lebih dari sekadar percakapan sehari-hari. Para matematikawan menyebut presisi bahasa dan logika ini sebagai "kaku" (rigor).

Lambang ketakhinggaan di dalam beberapa gaya sajian.

Kaku secara mendasar adalah tentang bukti matematika. Para matematikawan ingin teorema mereka mengikuti aksioma-aksioma dengan maksud penalaran yang sistematik. Ini untuk mencegah "teorema" yang salah ambil, didasarkan pada praduga kegagalan, di mana banyak contoh pernah muncul di dalam sejarah subjek ini.[19] Tingkat kekakuan diharapkan di dalam matematika selalu berubah-ubah sepanjang waktu: bangsa Yunani menginginkan dalil yang terperinci, namun pada saat itu metode yang digunakan Isaac Newton kuranglah kaku. Masalah yang melekat pada definisi-definisi yang digunakan Newton akan mengarah kepada munculnya analisis saksama dan bukti formal pada abad ke-19. Kini, para matematikawan masih terus beradu argumentasi tentang bukti berbantuan-komputer. Karena perhitungan besar sangatlah sukar diperiksa, bukti-bukti itu mungkin saja tidak cukup kaku.[20]

Aksioma menurut pemikiran tradisional adalah "kebenaran yang menjadi bukti dengan sendirinya", tetapi konsep ini memicu persoalan. Pada tingkatan formal, sebuah aksioma hanyalah seutas dawai lambang, yang hanya memiliki makna tersirat di dalam konteks semua rumus yang terturunkan dari suatu sistem aksioma. Inilah tujuan program Hilbert untuk meletakkan semua matematika pada sebuah basis aksioma yang kokoh, tetapi menurut Teorema ketaklengkapan Gödel tiap-tiap sistem aksioma (yang cukup kuat) memiliki rumus-rumus yang tidak dapat ditentukan; dan oleh karena itulah suatu aksiomatisasi terakhir di dalam matematika adalah mustahil. Meski demikian, matematika sering dibayangkan (di dalam konteks formal) tidak lain kecuali teori himpunan di beberapa aksiomatisasi, dengan pengertian bahwa tiap-tiap pernyataan atau bukti matematika dapat dikemas ke dalam rumus-rumus teori himpunan.[21]

Matematika sebagai ilmu pengetahuan

Carl Friedrich Gauss, menganggap dirinya sebagai "pangerannya para matematikawan", dan mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".

Carl Friedrich Gauss mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".[22] Di dalam bahasa aslinya, Latin Regina Scientiarum, juga di dalam bahasa Jerman Königin der Wissenschaften, kata yang bersesuaian dengan ilmu pengetahuan berarti (lapangan) pengetahuan. Jelas, inipun arti asli di dalam bahasa Inggris, dan tiada keraguan bahwa matematika di dalam konteks ini adalah sebuah ilmu pengetahuan. Pengkhususan yang mempersempit makna menjadi ilmu pengetahuan alam adalah di masa terkemudian. Bila seseorang memandang ilmu pengetahuan hanya terbatas pada dunia fisika, maka matematika, atau sekurang-kurangnya matematika murni, bukanlah ilmu pengetahuan.

Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, maka mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."[6]

Banyak filsuf yakin bahwa matematika tidaklah terpalsukan berdasarkan percobaan, dan dengan demikian bukanlah ilmu pengetahuan per definisi Karl Popper.[23] Tetapi, di dalam karya penting tahun 1930-an tentang logika matematika menunjukkan bahwa matematika tidak bisa direduksi menjadi logika, dan Karl Popper menyimpulkan bahwa "sebagian besar teori matematika, seperti halnya fisika dan biologi, adalah hipotetis-deduktif: oleh karena itu matematika menjadi lebih dekat ke ilmu pengetahuan alam yang hipotesis-hipotesisnya adalah konjektur (dugaan), lebih daripada sebagai hal yang baru."[24] Para bijak bestari lainnya, sebut saja Imre Lakatos, telah menerapkan satu versi pemalsuan kepada matematika itu sendiri.

Sebuah tinjauan alternatif adalah bahwa lapangan-lapangan ilmiah tertentu (misalnya fisika teoretis) adalah matematika dengan aksioma-aksioma yang ditujukan sedemikian sehingga bersesuaian dengan kenyataan. Faktanya, seorang fisikawan teoretis, J. M. Ziman, mengajukan pendapat bahwa ilmu pengetahuan adalah pengetahuan umum dan dengan demikian matematika termasuk di dalamnya.[25] Di beberapa kasus, matematika banyak saling berbagi dengan ilmu pengetahuan fisika, sebut saja penggalian dampak-dampak logis dari beberapa anggapan. Intuisi dan percobaan juga berperan penting di dalam perumusan konjektur-konjektur, baik itu di matematika, maupun di ilmu-ilmu pengetahuan (lainnya).

Matematika percobaan terus bertumbuh kembang, mengingat kepentingannya di dalam matematika, kemudian komputasi dan simulasi memainkan peran yang semakin menguat, baik itu di ilmu pengetahuan, maupun di matematika, melemahkan objeksi yang mana matematika tidak menggunakan metode ilmiah. Di dalam bukunya yang diterbitkan pada 2002 A New Kind of Science, Stephen Wolfram berdalil bahwa matematika komputasi pantas untuk digali secara empirik sebagai lapangan ilmiah di dalam haknya/kebenarannya sendiri.

Pendapat-pendapat para matematikawan terhadap hal ini adalah beraneka macam. Banyak matematikawan merasa bahwa untuk menyebut wilayah mereka sebagai ilmu pengetahuan sama saja dengan menurunkan kadar kepentingan sisi estetikanya, dan sejarahnya di dalam tujuh seni liberal tradisional; yang lainnya merasa bahwa pengabaian pranala ini terhadap ilmu pengetahuan sama saja dengan memutar-mutar mata yang buta terhadap fakta bahwa antarmuka antara matematika dan penerapannya di dalam ilmu pengetahuan dan rekayasa telah mengemudikan banyak pengembangan di dalam matematika.

Satu jalan yang dimainkan oleh perbedaan sudut pandang ini adalah di dalam perbincangan filsafat apakah matematika diciptakan (seperti di dalam seni) atau ditemukan (seperti di dalam ilmu pengetahuan). Adalah wajar bagi universitas bila dibagi ke dalam bagian-bagian yang menyertakan departemen Ilmu Pengetahuan dan Matematika, ini menunjukkan bahwa lapangan-lapangan itu dipandang bersekutu tetapi mereka tidak seperti dua sisi keping uang logam. Pada tataran praktisnya, para matematikawan biasanya dikelompokkan bersama-sama para ilmuwan pada tingkatan kasar, tetapi dipisahkan pada tingkatan akhir. Ini adalah salah satu dari banyak perkara yang diperhatikan di dalam filsafat matematika.

Penghargaan matematika umumnya dipelihara supaya tetap terpisah dari kesetaraannya dengan ilmu pengetahuan. Penghargaan yang adiluhung di dalam matematika adalah Fields Medal (medali lapangan),[26][27] dimulakan pada 1936 dan kini diselenggarakan tiap empat tahunan. Penghargaan ini sering dianggap setara dengan Hadiah Nobel ilmu pengetahuan.

Wolf Prize in Mathematics, dilembagakan pada 1978, mengakui masa prestasi, dan penghargaan internasional utama lainnya, Hadiah Abel, diperkenalkan pada 2003. Ini dianugerahkan bagi ruas khusus karya, dapat berupa pembaharuan, atau penyelesaian masalah yang terkemuka di dalam lapangan yang mapan.

Sebuah daftar terkenal berisikan 23 masalah terbuka, yang disebut "masalah Hilbert", dihimpun pada 1900 oleh matematikawan Jerman David Hilbert. Daftar ini meraih persulangan yang besar di antara para matematikawan, dan paling sedikit sembilan dari masalah-masalah itu kini terpecahkan.

Sebuah daftar baru berisi tujuh masalah penting, berjudul "Masalah Hadiah Milenium", diterbitkan pada 2000. Pemecahan tiap-tiap masalah ini berhadiah US$ 1 juta, dan hanya satu (hipotesis Riemann) yang mengalami penggandaan di dalam masalah-masalah Hilbert.

Bidang-bidang matematika

Sebuah sempoa, alat hitung sederhana yang dipakai sejak zaman kuno.

Disiplin-disiplin utama di dalam matematika pertama muncul karena kebutuhan akan perhitungan di dalam perdagangan, untuk memahami hubungan antarbilangan, untuk mengukur tanah, dan untuk meramal peristiwa astronomi. Empat kebutuhan ini secara kasar dapat dikaitkan dengan pembagian-pembagian kasar matematika ke dalam pengkajian besaran, struktur, ruang, dan perubahan (yakni aritmetika, aljabar, geometri, dan analisis). Selain pokok bahasan itu, juga terdapat pembagian-pembagian yang dipersembahkan untuk pranala-pranala penggalian dari jantung matematika ke lapangan-lapangan lain: ke logika, ke teori himpunan (dasar), ke matematika empirik dari aneka macam ilmu pengetahuan (matematika terapan), dan yang lebih baru adalah ke pengkajian kaku akan ketakpastian.

Besaran

Pengkajian besaran dimulakan dengan bilangan, pertama bilangan asli dan bilangan bulat ("semua bilangan") dan operasi aritmetika di ruang bilangan itu, yang dipersifatkan di dalam aritmetika. Sifat-sifat yang lebih dalam dari bilangan bulat dikaji di dalam teori bilangan, dari mana datangnya hasil-hasil popular seperti Teorema Terakhir Fermat. Teori bilangan juga memegang dua masalah tak terpecahkan: konjektur prima kembar dan konjektur Goldbach.

Karena sistem bilangan dikembangkan lebih jauh, bilangan bulat diakui sebagai himpunan bagian dari bilangan rasional ("pecahan"). Sementara bilangan pecahan berada di dalam bilangan real, yang dipakai untuk menyajikan besaran-besaran kontinu. Bilangan real diperumum menjadi bilangan kompleks. Inilah langkah pertama dari jenjang bilangan yang beranjak menyertakan kuarternion dan oktonion. Perhatian terhadap bilangan asli juga mengarah pada bilangan transfinit, yang memformalkan konsep pencacahan ketakhinggaan. Wilayah lain pengkajian ini adalah ukuran, yang mengarah pada bilangan kardinal dan kemudian pada konsepsi ketakhinggaan lainnya: bilangan aleph, yang memungkinkan perbandingan bermakna tentang ukuran himpunan-himpunan besar ketakhinggaan.

Bilangan asli Bilangan bulat Bilangan rasional Bilangan real Bilangan kompleks

Ruang

Pengkajian ruang bermula dengan geometri – khususnya, geometri euclid. Trigonometri memadukan ruang dan bilangan, dan mencakupi Teorema pitagoras yang terkenal. Pengkajian modern tentang ruang memperumum gagasan-gagasan ini untuk menyertakan geometri berdimensi lebih tinggi, geometri tak-euclid (yang berperan penting di dalam relativitas umum) dan topologi. Besaran dan ruang berperan penting di dalam geometri analitik, geometri diferensial, dan geometri aljabar. Di dalam geometri diferensial terdapat konsep-konsep buntelan serat dan kalkulus lipatan.

Di dalam geometri aljabar terdapat penjelasan objek-objek geometri sebagai himpunan penyelesaian persamaan polinom, memadukan konsep-konsep besaran dan ruang, dan juga pengkajian grup topologi, yang memadukan struktur dan ruang. Grup lie biasa dipakai untuk mengkaji ruang, struktur, dan perubahan. Topologi di dalam banyak percabangannya mungkin menjadi wilayah pertumbuhan terbesar di dalam matematika abad ke-20, dan menyertakan konjektur poincaré yang telah lama ada dan teorema empat warna, yang hanya "berhasil" dibuktikan dengan komputer, dan belum pernah dibuktikan oleh manusia secara manual.

Geometri Trigonometri Geometri diferensial Topologi Geometri fraktal

Perubahan

Memahami dan menjelaskan perubahan adalah tema biasa di dalam ilmu pengetahuan alam, dan kalkulus telah berkembang sebagai alat yang penuh-daya untuk menyeledikinya. Fungsi-fungsi muncul di sini, sebagai konsep penting untuk menjelaskan besaran yang berubah. Pengkajian kaku tentang bilangan real dan fungsi-fungsi berpeubah real dikenal sebagai analisis real, dengan analisis kompleks lapangan yang setara untuk bilangan kompleks.

Hipotesis Riemann, salah satu masalah terbuka yang paling mendasar di dalam matematika, dilukiskan dari analisis kompleks. Analisis fungsional memusatkan perhatian pada ruang fungsi (biasanya berdimensi tak-hingga). Satu dari banyak terapan analisis fungsional adalah mekanika kuantum.

Banyak masalah secara alami mengarah pada hubungan antara besaran dan laju perubahannya, dan ini dikaji sebagai persamaan diferensial. Banyak gejala di alam dapat dijelaskan menggunakan sistem dinamika; teori kekacauan mempertepat jalan-jalan di mana banyak sistem ini memamerkan perilaku deterministik yang masih saja belum terdugakan.

Kalkulus Kalkulus vektor Persamaan diferensial Sistem dinamika Teori chaos Analisis kompleks

Struktur

Banyak objek matematika, semisal himpunan bilangan dan fungsi, memamerkan struktur bagian dalam. Sifat-sifat struktural objek-objek ini diselidiki di dalam pengkajian grup, gelanggang, lapangan dan sistem abstrak lainnya, yang mereka sendiri adalah objek juga. Ini adalah lapangan aljabar abstrak. Sebuah konsep penting di sini yakni vektor, diperumum menjadi ruang vektor, dan dikaji di dalam aljabar linear. Pengkajian vektor memadukan tiga wilayah dasar matematika: besaran, struktur, dan ruang. Kalkulus vektor memperluas lapangan itu ke dalam wilayah dasar keempat, yakni perubahan. Kalkulus tensor mengkaji kesetangkupan dan perilaku vektor yang dirotasi. Sejumlah masalah kuno tentang Kompas dan konstruksi garis lurus akhirnya terpecahkan oleh Teori galois.

Teori bilangan Aljabar abstrak Teori grup Teori orde

Dasar dan filsafat

Untuk memeriksa dasar-dasar matematika, lapangan logika matematika dan teori himpunan dikembangkan, juga teori kategori yang masih dikembangkan. Kata majemuk "krisis dasar" mejelaskan pencarian dasar kaku untuk matematika yang mengambil tempat pada dasawarsa 1900-an sampai 1930-an.[28] Beberapa ketaksetujuan tentang dasar-dasar matematika berlanjut hingga kini. Krisis dasar dipicu oleh sejumlah silang sengketa pada masa itu, termasuk kontroversi teori himpunan Cantor dan kontroversi Brouwer-Hilbert.

Logika matematika diperhatikan dengan meletakkan matematika pada sebuah kerangka kerja aksiomatis yang kaku, dan mengkaji hasil-hasil kerangka kerja itu. Logika matematika adalah rumah bagi Teori ketaklengkapan kedua Gödel, mungkin hasil yang paling dirayakan di dunia logika, yang (secara informal) berakibat bahwa suatu sistem formal yang berisi aritmetika dasar, jika suara (maksudnya semua teorema yang dapat dibuktikan adalah benar), maka tak-lengkap (maksudnya terdapat teorema sejati yang tidak dapat dibuktikan di dalam sistem itu).

Gödel menunjukkan cara mengonstruksi, sembarang kumpulan aksioma bilangan teoretis yang diberikan, sebuah pernyataan formal di dalam logika yaitu sebuah bilangan sejati-suatu fakta teoretik, tetapi tidak mengikuti aksioma-aksioma itu. Oleh karena itu, tiada sistem formal yang merupakan aksiomatisasi sejati teori bilangan sepenuhnya. Logika modern dibagi ke dalam teori rekursi, teori model, dan teori pembuktian, dan terpaut dekat dengan ilmu komputer teoretis.

Logika matematika Teori himpunan Teori kategori

Matematika diskret

Matematika diskret adalah nama lazim untuk lapangan matematika yang paling berguna di dalam ilmu komputer teoretis. Ini menyertakan teori komputabilitas, teori kompleksitas komputasional, dan teori informasi. Teori komputabilitas memeriksa batasan-batasan berbagai model teoretis komputer, termasuk model yang dikenal paling berdaya - Mesin turing.

Teori kompleksitas adalah pengkajian traktabilitas oleh komputer; beberapa masalah, meski secara teoretis terselesaikan oleh komputer, tetapi cukup mahal menurut konteks waktu dan ruang, tidak dapat dikerjakan secara praktis, bahkan dengan cepatnya kemajuan perangkat keras komputer. Pamungkas, teori informasi memusatkan perhatian pada banyaknya data yang dapat disimpan pada media yang diberikan, dan oleh karenanya berkenaan dengan konsep-konsep semisal pemadatan dan entropi.

Sebagai lapangan yang relatif baru, matematika diskret memiliki sejumlah masalah terbuka yang mendasar. Yang paling terkenal adalah masalah "P=NP?", salah satu Masalah Hadiah Milenium.[29]

Kombinatorika Teori komputasi Kriptografi Teori graf

Matematika terapan

Matematika terapan berkenaan dengan penggunaan alat matematika abstrak guna memecahkan masalah-masalah konkret di dalam ilmu pengetahuan, bisnis, dan wilayah lainnya. Sebuah lapangan penting di dalam matematika terapan adalah statistika, yang menggunakan teori peluang sebagai alat dan membolehkan penjelasan, analisis, dan peramalan gejala di mana peluang berperan penting. Sebagian besar percobaan, survey, dan pengkajian pengamatan memerlukan statistika. (Tetapi banyak statistikawan, tidak menganggap mereka sendiri sebagai matematikawan, melainkan sebagai kelompok sekutu.)

Analisis numerik menyelidiki metode komputasional untuk memecahkan masalah-masalah matematika secara efisien yang biasanya terlalu lebar bagi kapasitas numerik manusia, analisis numerik melibatkan pengkajian galat pemotongan atau sumber-sumber galat lain di dalam komputasi.

Lihat pula

Catatan

  1. ^ Tidak ada perupaan atau penjelasan tentang wujud fisik Euklides yang dibuat selama masa hidupnya yang masih bertahan sebagai kekunoan. Oleh karena itu, penggambaran Euklides di dalam karya seni bergantung pada daya khayal seorang seniman (lihat Euklides).
  2. ^ Lynn Steen (29 April 1988). The Science of Patterns Jurnal Science, 240: 611–616. dan diikhtisarkan di Association for Supervision and Curriculum Development., ascd.org
  3. ^ Keith Devlin, Mathematics: The Science of Patterns: The Search for Order in Life, Mind and the Universe (Scientific American Paperback Library) 1996, ISBN 978-0-7167-5047-5
  4. ^ Jourdain.
  5. ^ Peirce, p.97
  6. ^ a b Einstein, p. 28. Kutipan ini adalah jawaban Einstein terhadap pertanyaan: "betapa mungkin bahwa matematika, di samping yang lain tentunya, menjadi ciptaan pemikiran manusia yang terbebas dari pengalaman, begitu luar biasa bersesuaian dengan objek-objek kenyataan?" Dia juga memperhatikan Keefektifan tak ternalar Matematika di dalam Ilmu Pengetahuan Alam.
  7. ^ Eves
  8. ^ Peterson
  9. ^ The Oxford Dictionary of English Etymology, Oxford English Dictionary
  10. ^ S. Dehaene, G. Dehaene-Lambertz and L. Cohen, Abstract representations of numbers in the animal and human brain, Trends in Neuroscience, Vol. 21 (8), Aug 1998, 355-361. http://dx.doi.org/10.1016/S0166-2236(98)01263-6.
  11. ^ Kline 1990, Chapter 1.
  12. ^ Sevryuk
  13. ^ Johnson, Gerald W.; Lapidus, Michel L. (2002). The Feynman Integral and Feynman's Operational Calculus. Oxford University Press. 
  14. ^ Eugene Wigner, 1960, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences," Komunikasi pada Matematika Murni dan Terapan 13(1): 1–14.
  15. ^ Hardy, G. H. (1940). A Mathematician's Apology. Cambridge University Press. 
  16. ^ Gold, Bonnie; Simons, Rogers A. (2008). Proof and Other Dilemmas: Mathematics and Philosophy. MAA. 
  17. ^ Aigner, Martin; Ziegler, Gunter M. (2001). Proofs from the Book. Springer. 
  18. ^ Penggunaan Aneka Lambang Matematika Terdini (memuat banyak referensi yang lebih jauh)
  19. ^ Lihatlah bukti palsu untuk contoh sederhana dari hal-hal yang bisa salah di dalam bukti formal. sejarah Teorema Empat Warna berisi contoh-contoh bukti-bukti salah yang tanpa sengaja diterima oleh para matematikawan lainnya pada saat itu.
  20. ^ Ivars Peterson, Wisatawan Matematika, Freeman, 1988, ISBN 0-7167-1953-3. p. 4 "Sedikit keluhan akan ketidakmampuan program komputer memeriksa secara wajar," (merujuk kepada bukti Haken-Apple terhadap Teorema Empat Warna).
  21. ^ Patrick Suppes, Axiomatic Set Theory, Dover, 1972, ISBN 0-486-61630-4. p. 1, "Di antara banyak cabang matematika modern, teori himpunan menduduki tempat yang unik: dengan sedikit pengecualian, entitas-entitas yang dikaji dan dianalisis di dalam matematika dapat dipandang sebagai himpunan khusus atau kelas-kelas objek tertentu."
  22. ^ Waltershausen
  23. ^ Shasha, Dennis Elliot; Lazere, Cathy A. (1998). Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists. Springer. hlm. 228. 
  24. ^ Popper 1995, p. 56
  25. ^ Ziman
  26. ^ "Fields Medal kini disepakati paling dikenal dan paling berpengaruh di dalam matematika." Monastyrsky
  27. ^ Riehm
  28. ^ Luke Howard Hodgkin & Luke Hodgkin, A History of Mathematics, Oxford University Press, 2005.
  29. ^ Clay Mathematics Institute P=NP

Referensi

Pranala luar

Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA