Oksigen

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
nitrogenoksigenfluor
-

O

S
Penampilan
gas tak berwarna, cairan berwarna biru pucat. Gambar ini adalah gambar oksigen cair.
A glass bottle half-filled with a bluish bubbling liquid

Spectral lines of oxygen
Ciri-ciri umum
Nama, lambang, Nomor atom oksigen, O, 8
Dibaca /ˈɒksɪən/ OK-si-jən
Jenis unsur nonlogam, kalkogen
Golongan, periode, blok 162, p
Massa atom standar 15.9994(3)
Konfigurasi elektron 1s2 2s2 2p4
2, 6
Sifat fisika
Fase gas
Massa jenis (0 °C, 101.325 kPa)
1.429 g/L
Massa jenis cairan pada t.d. 1.141 g·cm−3
Titik lebur 54.36 K, -218.79 °C, -361.82 °F
Titik didih 90.20 K, -182.95 °C, -297.31 °F
Titik kritis 154.59 K, 5.043 MPa
Kalor peleburan (O2) 0.444 kJ·mol−1
Kalor penguapan (O2) 6.82 kJ·mol−1
Kapasitas kalor (O2)
29.378 J·mol−1·K−1
Tekanan uap
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K)       61 73 90
Sifat atom
Bilangan oksidasi 2, 1, −1, −2
Elektronegativitas 3.44 (skala Pauling)
Energi ionisasi
(lebih lanjut)
pertama: 1313.9 kJ·mol−1
ke-2: 3388.3 kJ·mol−1
ke-3: 5300.5 kJ·mol−1
Jari-jari kovalen 66±2 pm
Jari-jari van der Waals 152 pm
Lain-lain
Struktur kristal cubic
Pembenahan magnetik paramagnetik
Konduktivitas termal 26.58x10-3  W·m−1·K−1
Kecepatan suara (gas, 27 °C) 330 m·s−1
Nomor CAS 7782-44-7
Isotop paling stabil
iso NA Waktu paruh DM DE (MeV) DP
16O 99.76% O stabil dengan 8 neutron
17O 0.039% O stabil dengan 9 neutron
18O 0.201% O stabil dengan 10 neutron
· r


Oksigen atau zat asam adalah unsur kimia dalam sistem tabel periodik yang mempunyai lambang O dan nomor atom 8. Ia merupakan unsur golongan kalkogen dan dapat dengan mudah bereaksi dengan hampir semua unsur lainnya (utamanya menjadi oksida). Pada Temperatur dan tekanan standar, dua atom unsur ini berikatan menjadi dioksigen, yaitu senyawa gas diatomik dengan rumus O2 yang tidak berwarna, tidak berasa, dan tidak berbau. Oksigen merupakan unsur paling melimpah ketiga di alam semesta berdasarkan massa[1] dan unsur paling melimpah di kerak Bumi.[2] Gas oksigen diatomik mengisi 20,9% volume atmosfer bumi..[3]

Semua kelompok molekul struktural yang terdapat pada organisme hidup, seperti protein, karbohidrat, dan lemak, mengandung oksigen. Demikian pula senyawa anorganik yang terdapat pada cangkang, gigi, dan tulang hewan. Oksigen dalam bentuk O2 dihasilkan dari air oleh sianobakteri, ganggang, dan tumbuhan selama fotosintesis, dan digunakan pada respirasi sel oleh hampir semua makhluk hidup. Oksigen beracun bagi organisme anaerob, yang merupakan bentuk kehidupan paling dominan pada masa-masa awal evolusi kehidupan. O2 kemudian mulai berakumulasi pada atomsfer sekitar 2,5 miliar tahun yang lalu.[4] Terdapat pula alotrop oksigen lainnya, yaitu ozon (O3). Lapisan ozon pada atomsfer membantu melindungi biosfer dari radiasi ultraviolet, namun pada permukaan bumi ia adalah polutan yang merupakan produk samping dari asbut.

Oksigen secara terpisah ditemukan oleh Carl Wilhelm Scheele di Uppsala pada tahun 1773 dan Joseph Priestley di Wiltshire pada tahun 1774. Temuan Priestley lebih terkenal oleh karena publikasinya merupakan yang pertama kali dicetak. Istilah oxygen diciptakan oleh Antoine Lavoisier pada tahun 1777,[5] yang eksperimennya dengan oksigen berhasil meruntuhkan teori flogiston pembakaran dan korosi yang terkenal. Oksigen secara industri dihasilkan dengan distilasi bertingkat udara cair, dengan munggunakan zeolit untuk memisahkan karbon dioksida dan nitrogen dari udara, ataupun elektrolisis air, dll. Oksigen digunakan dalam produksi baja, plastik, dan tekstil, ia juga digunakan sebagai propelan roket, untuk terapi oksigen, dan sebagai penyokong kehidupan pada pesawat terbang, kapal selam, penerbangan luar angkasa, dan penyelaman.

Karakteristik[sunting | sunting sumber]

Struktur[sunting | sunting sumber]

Pada temperatur dan tekanan standar, oksigen berupa gas tak berwarna dan tak berasa dengan rumus kimia O2, di mana dua atom oksigen secara kimiawi berikatan dengan konfigurasi elektron triplet spin. Ikatan ini memiliki orde ikatan dua dan sering dijelaskan secara sederhana sebagai ikatan ganda[6] ataupun sebagai kombinasi satu ikatan dua elektron dengan dua ikatan tiga elektron.[7]

Oksigen triplet merupakan keadaan dasar molekul O2.[8] Konfigurasi elektron molekul ini memiliki dua elektron tak berpasangan yang menduduki dua orbital molekul yang berdegenerasi.[9] Kedua orbital ini dikelompokkan sebagai antiikat (melemahkan orde ikatan dari tiga menjadi dua), sehingga ikatan oksigen diatomik adalah lebih lemah daripada ikatan rangkap tiga nitrogen.[8]

Dalam bentuk triplet yang normal, molekul O2 bersifat paramagnetik oleh karena spin momen magnetik elektron tak berpasangan molekul tersebut dan energi pertukaran negatif antara molekul O2 yang bersebelahan. Oksigen cair akan tertarik kepada magnet, sedemikiannya pada percobaan laboratorium, jembatan oksigen cair akan terbentuk di antara dua kutub magnet kuat.[10][11]

Oksigen singlet, adalah nama molekul oksigen O2 yang kesemuaan spin elektronnya berpasangan. Ia lebih reaktif terhadap molekul organik pada umumnya. Secara alami, oksigen singlet umumnya dihasilkan dari air selama fotosintesis.[12] Ia juga dihasilkan di troposfer melalui fotolisis ozon oleh sinar berpanjang gelombang pendek,[13] dan oleh sistem kekebalan tubuh sebagai sumber oksigen aktif.[14] Karotenoid pada organisme yang berfotosintesis (kemungkinan juga ada pada hewan) memainkan peran yang penting dalam menyerap oksigen singlet dan mengubahnya menjadi berkeadaan dasar tak tereksitasi sebelum ia menyebabkan kerusakan pada jaringan.[15]

Ozon merupakan gas langka pada bumi yang dapat ditemukan di stratosfer.

Alotrop[sunting | sunting sumber]

Alotrop oksigen elementer yang umumnya ditemukan di bumi adalah dioksigen O2. Ia memiliki panjang ikat 121 pm dan energi ikat 498 kJ·mol-1.[16] Altrop oksigen ini digunakan oleh makhluk hidup dalam respirasi sel dan merupakan komponen utama atmosfer bumi.

Trioksigen (O3), dikenal sebagai ozon, merupakan alotrop oksigen yang sangat reaktif dan dapat merusak jaringan paru-paru.[17] Ozon diproduksi di atmosfer bumi ketika O2 bergabung dengan oksigen atomik yang dihasilkan dari pemisahan O2 oleh radiasi ultraviolet (UV).[5] Oleh karena ozon menyerap gelombang UV dengan sangat kuat, lapisan ozon yang berada di atmosfer berfungsi sebagai perisai radiasi yang melindungi planet.[5] Namun, dekat permukaan bumi, ozon merupakan polutan udara yang dibentuk dari produk sampingan pembakaran otomobil.[18]

Molekul metastabil tetraoksigen (O4) ditemukan pada tahun 2001,[19][20] dan diasumsikan terdapat pada salah satu enam fase oksigen padat. Hal ini dibuktikan pada tahun 2006, dengan menekan O2 sampai dengan 20 GPa, dan ditemukan struktur gerombol rombohedral O8.[21] Gerombol ini berpotensi sebagai oksidator yang lebih kuat daripada O2 maupun O3, dan dapat digunakan dalam bahan bakar roket.[19][20] Fase logam oksigen ditemukan pada tahun 1990 ketika oksigen padat ditekan sampai di atas 96 GPa[22]. Ditemukan pula pada tahun 1998 bahwa pada suhu yang sangat rendah, fase ini menjadi superkonduktor.[23]

Sifat fisik[sunting | sunting sumber]

Warna oksigen cair adalah biru seperti warna biru langit. Fenomena ini tidak berkaitan; warna biru langit disebabkan oleh penyebaran Rayleigh.

Oksigen lebih larut dalam air daripada nitrogen. Air mengandung sekitar satu molekul O2 untuk setiap dua molekul N2, bandingkan dengan rasio atmosferik yang sekitar 1:4. Kelarutan oksigen dalam air bergantung pada suhu. Pada suhu 0 °C, konsentrasi oksigen dalam air adalah 14,6 mg·L−1, manakala pada suhu 20 °C oksigen yang larut adalah sekitar 7,6 mg·L−1.[24][25] Pada suhu 25 °C dan 1 atm udara, air tawar mengandung 6,04 mililiter (mL) oksigen per liter, manakala dalam air laut mengandung sekitar 4,95 mL per liter.[26] Pada suhu 5 °C, kelarutannya bertambah menjadi 9,0 mL (50% lebih banyak daripada 25 °C) per liter untuk air murni dan 7,2 mL (45% lebih) per liter untuk air laut.

Oksigen mengembun pada 90,20 K (−182,95 °C, −297,31 °F), dan membeku pada 54.36 K (−218,79 °C, −361,82 °F).[27] Baik oksigen cair dan oksigen padat berwarna biru langit. Hal ini dikarenakan oleh penyerapan warna merah. Oksigen cair dengan kadar kemurnian yang tinggi biasanya didapatkan dengan distilasi bertingkat udara cair;[28] Oksigen cair juga dapat dihasilkan dari pengembunan udara, menggunakan nitrogen cair dengan pendingin. Oksigen merupakan zat yang sangat reaktif dan harus dipisahkan dari bahan-bahan yang mudah terbakar.[29]

Isotop[sunting | sunting sumber]

Oksigen yang dapat ditemukan secara alami adalah 16O, 17O, dan 18O, dengan 16O merupakan yang paling melimpah (99,762%).[30] Isotop oksigen dapat berkisar dari yang bernomor massa 12 sampai dengan 28.[30]

Kebanyakan 16O di disintesis pada akhir proses fusi helium pada bintang, namun ada juga beberapa yang dihasilkan pada proses pembakaran neon.[31] 17O utamanya dihasilkan dari pembakaran hidrogen menjadi helium semasa siklus CNO, membuatnya menjadi isotop yang paling umum pada zona pembakaran hidrogen bintang.[31] Kebanyakan 18O diproduksi ketika 14N (berasal dari pembakaran CNO) menangkap inti 4He, menjadikannya bentuk isotop yang paling umum di zona kaya helium bintang.[31]

Empat belas radioisotop telah berhasil dikarakterisasi, yang paling stabil adalah 15O dengan umur paruh 122,24 detik  dan 14O dengan umur paruh 70,606 detik.[30] Isotop radioaktif sisanya memiliki umur paruh yang lebih pendek daripada 27 detik, dan mayoritas memiliki umur paruh kurang dari 83 milidetik.[30] Modus peluruhan yang paling umum untuk isotop yang lebih ringan dari 16O adalah penangkapan elektron, menghasilkan nitrogen, sedangkan modus peluruhan yang paling umum untuk isotop yang lebih berat daripada 18O adalah peluruhan beta, menghasilkan fluorin.[30]

Keberadaan[sunting | sunting sumber]

Menurut massanya, oksigen merupakan unsur kimia paling melimpah di biosfer, udara, laut, dan tanah bumi. Oksigen merupakan unsur kimia paling melimpah ketiga di alam semesta, setelah hidrogen dan helium.[1] Sekitar 0,9% massa Matahari adalah oksigen.[3] Oksigen mengisi sekitar 49,2% massa kerak bumi[2] dan merupakan komponen utama dalam samudera (88,8% berdasarkan massa).[3] Gas oksigen merupakan komponen paling umum kedua dalam atmosfer bumi, menduduki 21,0% volume dan 23,1% massa (sekitar 1015 ton) atmosfer.[32][3][33] Bumi memiliki ketidaklaziman pada atmosfernya dibandingkan planet-planet lainnya dalam sistem tata surya karena ia memiliki konsentrasi gas oksigen yang tinggi di atmosfernya. Bandingkan dengan Mars yang hanya memiliki 0,1% O2 berdasarkan volume dan Venus yang bahkan memiliki kadar konsentrasi yang lebih rendah. Namun, O2 yang berada di planet-planet selain bumi hanya dihasilkan dari radiasi ultraviolet yang menimpa molekul-molekul beratom oksigen, misalnya karbon dioksida.

Air dingin melarutkan lebih banyak O2.

Konsentrasi gas oksigen di Bumi yang tidak lazim ini merupakan akibat dari siklus oksigen. Siklus biogeokimia ini menjelaskan pergerakan oksigen di dalam dan di antara tiga reservoir utama bumi: atmosfer, biosfer, dan litosfer. Faktor utama yang mendorong siklus oksigen ini adalah fotosintesis. Fotosintesis melepaskan oksigen ke atmosfer, manakala respirasi dan proses pembusukan menghilangkannya dari atmosfer. Dalam keadaan kesetimbangan, laju produksi dan konsumsi oksigen adalah sekitar 1/2000 keseluruhan oksigen yang ada di atmosfer setiap tahunnya.

Oksigen bebas juga terdapat dalam air sebagai larutan. Peningkatan kelarutan O2 pada temperatur yang rendah memiliki implikasi yang besar pada kehidupan laut. Lautan di sekitar kutub bumi dapat menyokong kehidupan laut yang lebih banyak oleh karena kandungan oksigen yang lebih tinggi.[34] Air yang terkena polusi dapat mengurangi jumlah O2 dalam air tersebut. Para ilmuwan menaksir kualitas air dengan mengukur kebutuhan oksigen biologis atau jumlah O2 yang diperlukan untuk mengembalikan konsentrasi oksigen dalam air itu seperti semula.[35]

Peranan biologis[sunting | sunting sumber]

Fotosintesis dan respirasi[sunting | sunting sumber]

Fotosintesis menghasilkan O2

Di alam, oksigen bebas dihasilkan dari fotolisis air selama fotosintesis oksigenik. Ganggang hijau dan sianobakteri di lingkungan lautan menghasilkan sekitar 70% oksigen bebas yang dihasilkan di bumi, sedangkan sisanya dihasilkan oleh tumbuhan daratan.[36]

Persamaan kimia yang sederhana untuk fotosintesis adalah:[37]

6CO2 + 6H2O + fotonC6H12O6 + 6O2

Evolusi oksigen fotolitik terjadi di membran tilakoid organisme dan memerlukan energi empat foton.[38] Terdapat banyak langkah proses yang terlibat, namun hasilnya merupakan pembentukan gradien proton di seluruh permukaan tilakod. Ini digunakan untuk mensintesis ATP via fotofosforilasi.[39] O2 yang dihasilkan sebagai produk sampingan kemudian dilepaskan ke atmosfer.[40]

Dioksigen molekuler, O2, sangatlah penting untuk respirasi sel organisme aerob. Oksigen digunakan di mitokondria untuk membantu menghasilkan adenosina trifosfat (ATP) selama fosforilasi oksidatif. Reaksi respirasi aerob ini secara garis besar merupakan kebalikan dari fotosintesis, secara sederhana:

C6H12O6 + 6O2 → 6CO2 + 6H2O + 2880 kJ·mol-1

Pada vertebrata, O2 berdifusi melalui membran paru-paru dan dibawa oleh sel darah merah. Hemoglobin mengikat O2, mengubah warnanya dari merah kebiruan menjadi merah cerah.[41][17] Terdapat pula hewan lainnya yang menggunakan hemosianin (hewan moluska dan beberapa artropoda) ataupun hemeritrin (laba-laba dan lobster).[32] Satu liter darah dapat melarutkan 200 cc O2.[32]

Spesi oksigen yang reaktif, misalnya ion superoksida (O2) dan hidrogen peroksida (H2O2), adalah produk sampingan penggunaan oksigen dalam tubuh organisme.[32] Namun, bagian sistem kekebalan organisme tingkat tinggi pula menghasilkan peroksida, superoksida, dan oksigen singlet untuk menghancurkan mikroba. Spesi oksigen reaktif juga memainkan peran yang penting pada respon hipersensitif tumbuhan melawan serangan patogen.[39]

Dalam keadaan istirahat, manusia dewasa menghirup 1,8 sampai 2,4 gram oksigen per menit.[42] Jumlah ini setara dengan 6 miliar ton oksigen yang dihirup oleh seluruh manusia per tahun. [43]

Penumpukan oksigen di atmosfer[sunting | sunting sumber]

Peningkatan kadar O2 di atmosfer bumi: 1) tiada O2 yang dihasilkan; 2) O2 dihasilkan, namun diserap samudera dan batuan dasar laut; 3) O2 mulai melepaskan diri dari samuder, namun diserap oleh permukaan tanah dan pembentukan lapisan ozon; 4-5) gas O2 mulai berakumulasi

Gas oksigen bebas hampir tidak terdapat pada atmosfer bumi sebelum munculnya arkaea dan bakteri fotosintetik. Oksigen bebas pertama kali muncul dalam kadar yang signifikan semasa masa Paleoproterozoikum (antara 2,5 sampai dengan 1,6 miliar tahun yang lalu). Pertama-tama, oksigen bersamaan dengan besi yang larut dalam samudera, membentuk formasi pita besi (Banded iron formation). Oksigen mulai melepaskan diri dari samudera 2,7 miliar tahun lalu, dan mencapai 10% kadar sekarang sekitar 1,7 miliar tahun lalu.[44]

Keberadaan oksigen dalam jumlah besar di atmosfer dan samudera kemungkinan membuat kebanyakan organisme anaerob hampir punah semasa bencana oksigen sekitar 2,4 miliar tahun yang lalu. Namun, respirasi sel yang menggunakan O2 mengijinkan organisme aerob untuk memproduksi lebih banyak ATP daripada organisme anaerob, sehingga organisme aerob mendominasi biosfer bumi.[45] Fotosintesis dan respirasi seluler O2 mengijinkan berevolusinya sel eukariota dan akhirnya berevolusi menjadi organisme multisel seperti tumbuhan dan hewan.

Sejak permulaan era Kambrium 540 juta tahun yang lalu, kadar O2 berfluktuasi antara 15% sampai 30% berdasarkan volume.[46] Pada akhir masa Karbon, kadar O2 atmosfer mencapai maksimum dengan 35% berdasarkan volume,[46] mengijinkan serangga dan amfibi tumbuh lebih besar daripada ukuran sekarang. Aktivitas manusia, meliputi pembakaran 7 miliar ton bahan bakar fosil per tahun hanya memiliki pengaruh yang sangat kecil terhadap penurunan kadar oksigen di atmosfer. Dengan laju fotosintesis sekarang ini, diperlukan sekitar 2.000 tahun untuk memproduksi ulang seluruh O2 yang ada di atmosfer sekarang.[47]

Sejarah[sunting | sunting sumber]

Percobaan awal[sunting | sunting sumber]

Percobaan Philo yang menginspirasi para peneliti selanjutnya

Salah satu percobaan pertama yang menginvestigasi hubungan antara pembakaran dengan udara dilakukan oleh seorang penulis Yunani abad ke-2, Philo dari Bizantium. Dalam karyanya Pneumatica, Philo mengamati bahwa dengan membalikkan labu yang di dalamnnya terdapat lilin yang menyala dan kemudian menutup leher labu dengan air akan mengakibatkan permukaan air yang terdapat dalam leher labu tersebut meningkat.[48] Philo menyimpulkan bahwa sebagian udara dalam labu tersebut diubah menjadi unsur api, sehingga dapat melepaskan diri dari labu melalui pori-pori kaca. Beberapa abad kemudian, Leonardo da Vinci merancang eksperimen yang sama dan mengamati bahwa udara dikonsumsi selama pembakaran dan respirasi.[49]

Pada akhir abad ke-17, Robert Boyle membuktikan bahwa udara diperlukan dalam proses pembakaran. Kimiawan Inggris, John Mayow, melengkapi hasil kerja Boyle dengan menunjukkan bahwa hanya sebagian komponen udara yang ia sebut sebagai spiritus nitroaereus atau nitroaereus yang diperlukan dalam pembakaran.[50] Pada satu eksperimen, ia menemukan bahwa dengan memasukkan seekor tikus ataupun sebatang lilin ke dalam wadah penampung yang tertutup oleh permukaan air akan mengakibatkan permukaan air tersebut naik dan menggantikan seperempatbelas volume udara yang hilang.[51] Dari percobaan ini, ia menyimpulkan bahwa nitroaereus digunakan dalam proses respirasi dan pembakaran.

Mayow mengamati bahwa berat antimon akan meningkat ketika dipanaskan. Ia menyimpulkan bahwa nitroaereus haruslah telah bergabung dengan antimon.[50] Ia juga mengira bahwa paru-para memisahkan nitroaereus dari udara dan menghantarkannya ke dalam darah, dan panas tubuh hewan serta pergerakan otot akan mengakibatkan reaksi nitroaereus dengan zat-zat tertentu dalam tubuh.[50] Laporan seperti ini dan pemikiran-pemikiran serta percobaan-percobaan lainnya dipublikasikan pada tahun 1668 dalam karyanya Tractatus duo pada bagian "De respiratione".[51]

Teori flogiston[sunting | sunting sumber]

Stahl membantu mengembangkan dan memopulerkan teori flogiston.

Dalam percobaan Robert Hooke, Ole Borch, Mikhail Lomonosov, dan Pierre Bayen, percobaan mereka semuanya menghasilkan oksigen, namun tiada satupun dari mereka yang mengenalinya sebagai unsur.[24] Hal ini kemungkinan besar disebabkan oleh prevalensi filosofi pembakaran dan korosi yang dikenal sebagai teori flogiston.

Teori flogiston dikemukakan oleh alkimiawan Jerman, J. J. Becher pada tahun 1667, dan dimodifikasi oleh kimiawan Georg Ernst Stahl pada tahun 1731.[52] Teori flogiston menyatakan bahwa semua bahan yang dapat terbakar terbuat dari dua bagian komponen. Salah satunya adalah flogiston, yang dilepaskan ketika bahan tersebut dibakar, sedangkan bagian yang tersisa setelah terbakar merupakan bentuk asli materi tersebut.[49]

Bahan-bahan yang terbakar dengan hebat dan meninggalkan sedikit residu (misalnya kayu dan batu bara), dianggap memiliki kadar flogiston yang sangat tinggi, sedangkan bahan-bahan yang tidak mudah terbakar dan berkorosi (misalnya besi), mengandung sangat sedikit flogiston. Udara tidak memiliki peranan dalam teori flogiston. Tiada eksperimen kuantitatif yang pernah dilakukan untuk menguji keabsahan teori flogiston ini, melainkan teori ini hanya didasarkan pada pengamatan bahwa ketika sesuatu terbakar, kebanyakan objek tampaknya menjadi lebih ringan dan sepertinya kehilangan sesuatu selama proses pembakaran tersebut.[49] Fakta bahwa materi seperti kayu sebenarnya bertambah berat dalam proses pembakaran tertutup oleh gaya apung yang dimiliki oleh produk pembakaran yang berupa gas tersebut. Sebenarnya pun, fakta bahwa logam akan bertambah berat ketika berkarat menjadi petunjuk awal bahwa teori flogiston tidaklah benar (yang mana menurut teori flogiston, logam tersebut akan menjadi lebih ringan).

Carl Wilhelm Scheele mendahului Priestley dalam penemuan oksigen, namun publikasinya dilakukan setelah Priestley.

Penemuan[sunting | sunting sumber]

Oksigen pertama kali ditemukan oleh seorang ahli obat Carl Wilhelm Scheele. Ia menghasilkan gas oksigen dengan mamanaskan raksa oksida dan berbagai nitrat sekitar tahun 1772.[49][3] Scheele menyebut gas ini 'udara api' karena ia murupakan satu-satunya gas yang diketahui mendukung pembakaran. Ia menuliskan pengamatannya ke dalam sebuah manuskrip yang berjudul Treatise on Air and Fire, yang kemudian ia kirimkan ke penerbitnya pada tahun 1775. Namun, dokumen ini tidak dipublikasikan sampai dengan tahun 1777.[53]

Joseph Priestley biasanya diberikan prioritas dalam penemuan oksigen

Pada saat yang sama, seorang pastor Britania, Joseph Priestley, melakukan percobaan yang memfokuskan cahaya matahari ke raksa oksida (HgO) dalam tabung gelas pada tanggal 1 Augustus 1774. Percobaan ini menghasilkan gas yang ia namakan 'dephlogisticated air'.[3] Ia mencatat bahwa lilin akan menyala lebih terang di dalam gas tersebut dan seekor tikus akan menjadi lebih aktif dan hidup lebih lama ketika menghirup udara tersebut. Setelah mencoba menghirup gas itu sendiri, ia menulis: "The feeling of it to my lungs was not sensibly different from that of common air, but I fancied that my breast felt peculiarly light and easy for some time afterwards."[24] Priestley mempublikasikan penemuannya pada tahun 1775 dalam sebuah laporan yang berjudul "An Account of Further Discoveries in Air". Laporan ini pula dimasukkan ke dalam jilid kedua bukunya yang berjudul Experiments and Observations on Different Kinds of Air.[54][49] Oleh karena ia mempublikasikan penemuannya terlebih dahulu, Priestley biasanya diberikan prioritas terlebih dahulu dalam penemuan oksigen.

Seorang kimiawan Perancis, Antoine Laurent Lavoisier kemudian mengklaim bahwa ia telah menemukan zat baru secara independen. Namun, Priestley mengunjungi Lavoisier pada Oktober 1774 dan memberitahukan Lavoisier mengenai eksperimennya serta bagaimana ia menghasilkan gas baru tersebut. Scheele juga mengirimkan sebuah surat kepada Lavoisier pada 30 September 1774 yang menjelaskan penemuannya mengenai zat yang tak diketahui, tetapi Lavoisier tidak pernah mengakui menerima surat tersebut (sebuah kopian surat ini ditemukan dalam barang-barang pribadi Scheele setelah kematiannya).[53]

Kontribusi Lavoisier[sunting | sunting sumber]

Apa yang Lavoisier tidak terbantahkan pernah lakukan (walaupun pada saat itu dipertentangkan) adalah percobaan kuantitatif pertama mengenai oksidasi yang mengantarkannya kepada penjelasan bagaimana proses pembakaran bekerja.[3] Ia menggunakan percobaan ini beserta percobaan yang mirip lainnya untuk meruntuhkan teori flogiston dan membuktikan bahwa zat yang ditemukan oleh Priestley dan Scheele adalah unsur kimia.

Antoine Lavoisier mendiskreditkan teori flogiston

Pada satu eksperimen, Lavoisier mengamati bahwa tidak terdapat keseluruhan peningkatan berat ketika timah dan udara dipanaskan di dalam wadah tertutup.[3] Ia mencatat bahwa udara segera masuk ke dalam wadah seketika ia membuka wadah tersebut. Hal ini mengindikasikan bahwa sebagian udara yang berada dalam wadah tersebut telah dikonsumsi. Ia juga mencatat bahwa berat timah tersebut juga telah meningkat dan jumlah peningkatan ini adalah sama beratnya dengan udara yang masuk ke dalam wadah tersebut. Percobaan ini beserta percobaan mengenai pembakaran lainnya didokumentasikan ke dalam bukunya Sur la combustion en général yang dipublikasikan pada tahun 1777.[3] Hasil kerjanya membuktikan bahwa udara merupakan campuran dua gas, 'udara vital', yang diperlukan dalam pembakaran dan respirasi, serta azote (Bahasa Yunani ἄζωτον "tak bernyawa"), yang tidak mendukung pembakaran maupun respirasi. Azote kemudian menjadi apa yang dinamakan sebagai nitrogen, walaupun dalam Bahasa Perancis dan beberapa bahasa Eropa lainnya masih menggunakan nama Azote.[3]

Lavoisier menamai ulang 'udara vital' tersebut menjadi oxygène pada tahun 1777. Nama tersebut berasal dari akar kata Yunani ὀξύς (oxys) (asam, secara harfiah "tajam") dan -γενής (-genēs) (penghasil, secara harfiah penghasil keturunan). Ia menamainya demikian karena ia percaya bahwa oksigen merupakan komponen dari semua asam.[5] Ini tidaklah benar, namun pada saat para kimiawan menemukan kesalahan ini, nama oxygène telah digunakan secara luas dan sudah terlambat untuk menggantinya. Sebenarnya gas yang lebih tepat untuk disebut sebagai "penghasil asam" adalah hidrogen.

Oxygène kemudian diserap menjadi oxygen dalam bahasa Inggris walaupun terdapat penentangan dari ilmuwan-ilmuwan Inggris dikarenakan bahwa adalah seorang Inggris, Priestley, yang pertama kali mengisolasi serta menuliskan keterangan mengenai gas ini. Penyerapan ini secara sebagian didorong oleh sebuah puisi berjudul "Oxygen" yang memuji gas ini dalam sebuah buku populer The Botanic Garden (1791) oleh Erasmus Darwin, kakek Charles Darwin.[53]

Sejarah selanjutnya[sunting | sunting sumber]

Robert H. Goddard dengan roket berbahan bakar campuran bensin dan oksigen cair rancangannya

Hipotesis atom awal John Dalton berasumsi bahwa semua unsur berupa monoatomik dan atom-atom dalam suatu senyawa akan memiliki rasio atom paling sederhana terhadap satu sama lainnya. Sebagai contoh, Dalton berasumsi bahwa rumus air adalah HO, sehingga massa atom oksigen adalah 8 kali massa hidrogen (nilai yang sebenarnya adalah 16).[55] Pada tahun 1805, Joseph Louis Gay-Lussac dan Alexander von Humboldt menunjukkan bahwa air terbentuk dari dua volume hidrogen dengan satu volume oksigen; dan pada tahun 1811, berdasarkan apa yang sekarang disebut hukum Avogadro dan asumsi molekul unsur diatomik, Amedeo Avogadro memperkirakan komposisi air dengan benar.[56][57]

Pada akhir abad ke-19, para ilmuwan menyadari bahwa udara dapat dicairkan dan komponen-komponennya dapat dipisahkan dengan mengkompres dan mendinginkannya. Kimiawan dan fisikawan Swiss, Raoul Pierre Pictet, menguapkan cairan sulfur dioksida untuk mencairkan karbon dioksida, yang mana pada akhirnya diuapkan untuk mendinginkan gas oksigen menjadi cairan. Ia mengirim sebuah telegram pada 22 Desember 1877 kepada Akademi Sains Prancis di Paris dan mengumumkan penemuan oksigen cairnya.[58] Dua hari kemudian, fisikawan Perancis Louis Paul Cailletet mengumumkan metodenya untuk mencairkan oksigen molekuler.[58] Hanya beberapa tetes cairan yang dihasilkan sehingga tidak ada analisis berarti yang dapat dilaksanakan. Oksigen berhasil dicairkan ke dalam keadaan stabil untuk pertama kalinya pada 29 Maret 1877 oleh ilmuwan Polandia dari Universitas Jagiellonian, Zygmunt Wróblewski dan Karol Olszewski.[59]

Pada tahun 1891, kimiawan Skotlandia James Dewar berhasil memproduksi oksigen cair dalam jumlah yang cukup banyak untuk dipelajari.[60] Proses produksi oksigen cair secara komersial dikembangkan secara terpisah pada tahun 1895 oleh insinyur Jerman Carl von Linde dan insinyur Britania William Hampson. Kedua insinyur tersebut menurunkan suhu udara sampai ia mencair dan kemudian mendistilasi udara cair tersebut.[61] Pada tahun 1901, pengelasan oksiasetilena didemonstrasikan untuk pertama kalinya dengan membakar campuran asetilena dan O2 yang dimampatkan. Metode pengelasan dan pemotongan logam ini pada akhirnya digunakan secara meluas.[61]

Pada tahun 1923, ilmuwan Amerika Robert H. Goddard menjadi orang pertama yang mengembangkan mesin roket; mesin ini menggunakan bensin sebagai bahan bakar dan oksigen cair sebagai oksidator. Goddard berhasil menerbangkan roket kecil sejauh 56 m dengan kecepatan 97 km/jam pada 16 Maret 1926 di Auburn, Massachusetts, USA.[61][62]

Senyawa oksigen[sunting | sunting sumber]

Air (H2O) adalah senyawa oksigen yang paling dikenal.

Keadaan oksidasi okesigen adalah -2 untuk hampir semua senyawa oksigen yang diketahui. Keadaan oksidasi -1 ditemukan pada beberapa senyawa seperti peroksida.[63] Senyawa oksigen dengan keadaan oksidasi lainnya sangat jarang ditemukan, yakni -1/2 (superoksida), -1/3 (ozonida), 0 (asam hipofluorit), +1/2 (dioksigenil), +1 (dioksigen difluorida), dan +2 (oksigen difluorida).

Senyawa oksida dan senyawa anorganik lainnya[sunting | sunting sumber]

Air (H2O) adalah oksida hidrogen dan merupakan senyawa oksigen yang paling dikenal. Atom hidrogen secara kovalen berikatan dengan oksigen. Selain itu, atom hidrogen juga berinteraksi dengan atom oksigen dari molekul air lainnya (sekitar 23,3 kJ·mol−1 per atom hidrogen).[64] Ikatan hidrogen antar molekul air ini menjaga kedua molekul 15% lebih dekat daripada yang diperkirakan apabila hanya memperhitungkan gaya Van der Waals.[65][66]

Senyawa oksida seperti besi oksida atau karat terbentuk ketika oksigen bereaksi dengan unsur lainnya.

Oleh karena elektronegativitasnya, oksigen akan membentuk ikatan kimia dengan hampir semua unsur lainnya pada suhu tinggi dan menghasilkan senyawa oksida. Namun, terdapat pula beberapa unsur yang secara spontan akan membentuk oksida pada suhu dan tekanan standar. Perkaratan besi merupakan salah satu contohnya. Permukaan logam seperti aluminium dan titanium teroksidasi dengan keberadaan udara dan membuat permukaan logam tersebut tertutupi oleh lapisan tipis oksida. Lapisan oksida ini akan mencegah korosi lebih lanjut. Beberapa senyawa oksida logam transisi ditemukan secara alami sebagai senyawa non-stoikiometris. Sebagai contohnya, FeO (wustit) sebenarnya berumus Fe1 − xO, dengan x biasanya sekitar 0,05.[67]

Di atmosfer pula, kita dapat menemukan sejumlah kecil oksida karbon, yaitu karbon dioksida (CO2). Pada kerak bumi pula dapat ditemukan berbagai senyawa oksida, yakni oksida silikon (Silika SO2) yang ditemukan pada granit dan pasir, oksida aluminium (aluminium oksida Al2O3 yang ditemukan pada bauksit dan korundum), dan oksida besi (besi(III) oksida Fe2O3) yang ditemukan pada hematit dan karat logam.

Rujukan[sunting | sunting sumber]

  1. ^ a b Emsley 2001, p.297
  2. ^ a b "Oxygen". Los Alamos National Laboratory. Diakses 2007-12-16. 
  3. ^ a b c d e f g h i j Cook & Lauer 1968, p.500
  4. ^ NASA (2007-09-27). NASA Research Indicates Oxygen on Earth 2.5 Billion Years Ago. Siaran pers. Diakses pada 2008-03-13.
  5. ^ a b c d Mellor 1939
  6. ^ "Molecular Orbital Theory". Purdue University. Diakses 2008-01-28. 
  7. ^ Pauling, L. The Nature of the Chemical Bond. Cornell University Press, 1960.
  8. ^ a b Jakubowski, Henry. "Chapter 8: Oxidation-Phosphorylation, the Chemistry of Di-Oxygen". Biochemistry Online. Saint John's University. Diakses 2008-01-28. 
  9. ^ Orbital merupakan konspe mekanika kuantum yang memodelkan elektron sebagai partikel bak gelombang yang memiliki distribusi spasial di sekitar atom ataupun molekul.
  10. ^ "Demonstration of a bridge of liquid oxygen supported against its own weight between the poles of a powerful magnet". University of Wisconsin-Madison Chemistry Department Demonstration lab. Diakses 2007-12-15. 
  11. ^ Oxygen's paramagnetism can be used analytically in paramagnetic oxygen gas analysers that determine the purity of gaseous oxygen. ("Company literature of Oxygen analyzers (triplet)". Servomex. Diakses 2007-12-15. )
  12. ^ Krieger-Liszkay 2005, 337-46
  13. ^ Harrison 1990
  14. ^ Wentworth 2002
  15. ^ Hirayama 1994, 149-150
  16. ^ Chieh, Chung. "Bond Lengths and Energies". University of Waterloo. Diakses 2007-12-16. 
  17. ^ a b Stwertka 1998, p.48
  18. ^ Stwertka 1998, p.49
  19. ^ a b Cacace 2001, 4062
  20. ^ a b Ball, Phillip (2001-09-16). "New form of oxygen found". Nature News. Diakses 2008-01-09. 
  21. ^ Lundegaard 2006, 201–04
  22. ^ Desgreniers 1990, 1117–22
  23. ^ Shimizu 1998, 767–69
  24. ^ a b c Emsley 2001, p.299
  25. ^ "Air solubility in water". The Engineering Toolbox. Diakses 2007-12-21. 
  26. ^ Evans & Claiborne 2006, 88
  27. ^ Lide 2003, Section 4
  28. ^ "Overview of Cryogenic Air Separation and Liquefier Systems". Universal Industrial Gases, Inc. Diakses 2007-12-15. 
  29. ^ "Liquid Oxygen Material Safety Data Sheet" (PDF). Matheson Tri Gas. Diakses 2007-12-15. 
  30. ^ a b c d e "Oxygen Nuclides / Isotopes". EnvironmentalChemistry.com. Diakses 2007-12-17. 
  31. ^ a b c Meyer 2005, 9022
  32. ^ a b c d Emsley 2001, p.298
  33. ^ Figures given are for values up to 50 mil (80 km) above the surface
  34. ^ From The Chemistry and Fertility of Sea Waters by H.W. Harvey, 1955, citing C.J.J. Fox, "On the coefficients of absorption of atmospheric gases in sea water", Publ. Circ. Cons. Explor. Mer, no. 41, 1907. Harvey however notes that according to later articles in Nature the values appear to be about 3% too high.
  35. ^ Emsley 2001, p.301
  36. ^ Fenical 1983, "Marine Plants"
  37. ^ Brown 2003, 958
  38. ^ Membran tilakoid merupakan bagian kloroplas ganggang dan tumbuhan, sedangkan pada sianobakteri, ia adalah struktur membran sel sianobakteri. Kloroplas diperkirakan berevolusi dari sianobakteri yang bersimbiosis dengan tumbuhan.
  39. ^ a b Raven 2005, 115–27
  40. ^ Water oxidation is catalyzed by a manganese-containing enzyme complex known as the oxygen evolving complex (OEC) or water-splitting complex found associated with the lumenal side of thylakoid membranes. Manganese is an important cofactor, and calcium and chloride are also required for the reaction to occur.(Raven 2005)
  41. ^ CO2 dilepaskan di bagian lain hemoglobin (lihat efek Bohr)
  42. ^ "Untuk manusia, volume normal adalah 6-8 liter per menit." [1]
  43. ^ (1,8 gram)*(60 menit)*(24 jam)*(365 hari)*(6,6 miliar orang)/1.000.000=6,24 miliar ton
  44. ^ Campbell 2005, 522–23
  45. ^ Freeman 2005, 214, 586
  46. ^ a b Berner 1999, 10955–57
  47. ^ Dole 1965, 5–27
  48. ^ Jastrow 1936, 171
  49. ^ a b c d e Cook & Lauer 1968, p.499.
  50. ^ a b c Britannica contributors 1911, "John Mayow"
  51. ^ a b World of Chemistry contributors 2005, "John Mayow"
  52. ^ Morris 2003
  53. ^ a b c Emsley 2001, p.300
  54. ^ Priestley 1775, 384–94
  55. ^ DeTurck, Dennis; Gladney, Larry and Pietrovito, Anthony (1997). "Do We Take Atoms for Granted?". The Interactive Textbook of PFP96. University of Pennsylvania. Diakses 2008-01-28. 
  56. ^ Roscoe 1883, 38
  57. ^ Namun, hasil kerjanya kebanyakan diabaikan sampai dengan tahun 1860. Hal ini sebagian dikarenakan oleh kepercayaan bahwa atom yang seunsur tidak akan memiliki afinitas kimia terhadap satu sama lainnya. Selain itu, juga disebabkan oleh kekecualian hukum Avogadro yang belum berhasil dijelaskan pada saat itu.
  58. ^ a b Daintith 1994, p.707
  59. ^ Poland - Culture, Science and Media. Condensation of oxygen and nitrogen. Retrieved on 2008-10-04.
  60. ^ Emsley 2001, p.303
  61. ^ a b c How Products are Made contributors, "Oxygen"
  62. ^ "Goddard-1926". NASA. Diakses 2007-11-18. 
  63. ^ Greenwood & Earnshaw 1997, 28
  64. ^ Maksyutenko et al. 2006
  65. ^ Chaplin, Martin (2008-01-04). "Water Hydrogen Bonding". Diakses 2008-01-06. 
  66. ^ Selain itu, oleh karena oksigen memiliki elektronegativitas yang lebih tinggi daripada hidrogen, molekul air bersifat polar.
  67. ^ Smart 2005, 214