Fungsi zeta Riemann

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Fungsi zeta Riemann ζ(z) digambarkan dengan pewarnaan domain.[1]
Pole di dan dua akar di garis kritis.

Fungsi zeta Riemann atau fungsi zeta Euler–Riemann adalah fungsi variabel kompleks, dilambangkan dengan huruf Yunani (zeta), yang dirumuskan sebagai berikut

, jika , dan melalui pengontinuan analitik jika .[2]

Fungsi ini memiliki peranan yang krusial pada teori bilangan analitik dan juga memiliki aplikasi pada fisika, teori probabilitas, dan statistika terapan.

Fungsi ini pertama kali diperkenalkan oleh Leonhard Euler, namun awalnya ia memperkenalkan fungsi ini sebagai fungsi real pada abad ke-18. Kemudian, pada 1859, Bernhard Riemann memperluas definisi yang diberikan oleh Euler, menjadikan fungsi ini sebagai fungsi kompleks yang meromorfik, memberikan persamaan fungsional untuk fungsi ini dan memaparkan hubungan antara nol dari fungsi ini dan distribusi bilangan prima, melalui artikelnya yang berjudul "On the Number of Primes Less Than a Given Magnitude". Artikel ini juga memuat hipotesis Riemann, suatu konjektur tentang distribusi nol kompleks dari fungsi zeta Riemann. Banyak matematikawan berpandangan bahwa hipotesis ini merupakan salah satu masalah terpenting di bidang matematika murni.[3]

Nilai dari fungsi zeta Riemann pada bilangan genap positif telah ditemukan oleh Euler. Nilai , khususnya, menyelesaikan permasalahan Basel. Pada 1979, Roger Apéry membuktikan bahwa bernilai irasional. Euler juga menemukan nilai fungsi zeta Riemann pada bilangan bulat negatif yang merupakan bilangan rasional dan memiliki peranan penting pada bentuk modular. Fungsi zeta Riemann juga memiliki perumuman, seperti deret Dirichlet, fungsi-L Dirichlet, dan fungsi-L.

Definisi[sunting | sunting sumber]

Fungsi zeta Riemann adalah fungsi variabel kompleks . (Penggunaan notasi dan di sini mengikuti notasi yang awalnya digunakan Riemann untuk memelajari fungsi ). Jika , fungsi ini dapat dituliskan sebagai deret atau integral konvergen berikut:

dengan
adalah fungsi Gamma. Untuk nilai kompleks lainnya, fungsi zeta Riemann didefinisikan melalui pengontinuan analitik dari fungsi yang telah didefinisikan untuk .

Leonhard Euler menggunakan definisi deret di atas untuk bilangan bulat positif pada 1740, dan kemudian Chebyshev memperluas definisi ini untuk .[4]

Deret di atas merupakan prototipe dari deret Dirichlet yang konvergen mutlak ke suatu fungsi analitik untuk dengan dan divergen untuk nilai lainnya. Riemann menunjukkan bahwa fungsi yang didefinisikan oleh deret yang konvergen hanya pada setengah bidang kompleks memiliki pengontinuan analitik ke seluruh nilai kompleks . Untuk , deret di atas adalah deret harmonik yang divergen menuju , dan

Dengan demikian, fungsi zeta Riemann merupakan fungsi meromorfik pada bidang kompleks , yang holomorfik di mana-mana, kecuali di yang merupakan kutub sederhana dengan residu 1.

Identitas darab Euler[sunting | sunting sumber]

Pada 1737, hubungan antara fungsi zeta dan bilangan prima ditemukan oleh Euler, yang membuktikan membuktikan identitas berikut.

dengan bentuk matematika pada ruas kiri adalah ζ(s) dari definisi dan pada ruas kanan adalah darab (perkalian) tak hingga yang menjangkau seluruh bilangan prima p (bentuk demikian disebut darab Euler):

Kedua ruas pada identitas darab Euler konvergen jika Re(s) > 1. Identitas Euler di atas dapat dibuktikan dengan hanya menggunakan deret geometri dan teorema dasar aritmetika. Karena deret harmonik, yang diperoleh dengan mensubstitusi s = 1 pada ekspresi matematika di atas, divergen, identitas Euler (yang menjadi Πp pp − 1) memberikan bukti bahwa banyaknya bilangan prima adalah tak hingga.[5] Karena logaritma dari pp − 1 mendekati 1p, identitas ini dapat digunakan untuk membuktikan hasil yang lebih kuat bahwa deret resiprokal bilangan prima divergen menuju tak hingga. Di sisi lain, hasil ini dan tapis Erasthothenes memperlihatkan bahwa kepadatan himpunan bilangan prima dalam himpunan bilangan bulat positif adalah nol.

Identitas darab Euler dapat digunakan untuk menghitung peluang asimtotik terpilihnya s bilangan bulat positif yang membentuk himpunan yang koprima pada pengambilan s bilangan bulat positif secara acak. Secara intituitif, peluang sebuah bilangan habis dibagi suatu bilangan prima (atau sembarang bilangan bulat positif) p adalah 1p. Akibatnya, peluang semua s bilangan yang terpilih habis dibagi bilangan p adalah 1ps, dan peluang setidaknya ada satu bilangan yang tidak habis dibagi p adalah 1 − 1ps. Untuk sembarang prima yang berbeda, kejadian keterbagian ini saling bebas, sebab kandidat pembaginya (yaitu bilangan-bilangan prima) saling koprima. Dengan demikian, peluang asimtotik terpilihnya s bilangan bulat positif yang membentuk himpunan yang koprima diberikan oleh darab berikut yang menjangkau seluruh bilangan prima,

Persamaan fungsional Riemann[sunting | sunting sumber]

Fungsi zeta memenuhi persamaan fungsional

dengan Γ(s) adalah fungsi Gamma. Ini adalah persamaan fungsi meromorfik yang valid di seluruh bidang kompleks. Persamaan ini menghubungkan nilai dari fungsi zeta Riemann di titik s dan 1 − s, khususnya mengaitkan nilai fungsi ini di titik bilangan bulat positif dengan titik bilangan ganjil negatif. Karena fungsi sinus di persamaan memiliki nol sederhana di setiap bilangan bulat, persamaan fungsional ini menunjukkan bahwa ζ(s) memiliki nol sederhana di setiap bilangan bulat negatif s = −2n, yang dikenal sebagai nol trivial dari ζ(s). Di sisi lain, jika s adalah bilangan genap positif, hasi kali sin(πs2)Γ(1 − s) pada ruas kanan bernilai tidak nol karena Γ(1 − s) memiliki kutub sederhana, yang dapat dicoret dengan nol sederhana dari fungsi sinus.

Bukti persamaan fungsional Riemann —

Bukti dari persamaan fungsional Riemann adalah sebagai berikut: Perhatikan bahwa jika , berlaku

Akibatnya, jika maka

Perhatikan bahwa penukaran deret dan integral valid dari konvergensi mutlak (oleh karenanya syarat pada diperketat).

Untuk memudahkan, misalkan

Maka

Dari Identitas deret Poisson, berlaku

sehingga

Akibatnya,

yang ekuivalen dengan

atau

Sekarang,

yang konvergen untuk setiap s, sehingga identitas ini berlaku dari pengontinuan analitik. Lebih lanjut lagi, ruas sebelah kanan juga tidak berubah jika s diganti menjadi 1 − s, sehingga

yang merupakan persamaan fungsional di atas. E. C. Titchmarsh (1986). The Theory of the Riemann Zeta-function (edisi ke-2nd). Oxford: Oxford Science Publications. hlm. 21–22. ISBN 0-19-853369-1.  Attributed to Bernhard Riemann.

Persamaan fungsional ini dibuktikan oleh Riemann pada tahun 1859 di artikelnya berjudul "On the Number of Primes Less Than a Given Magnitude". Dia menggunakan persamaan ini untuk mengkonstruksi pengontinuan analitik dari fungsi zeta yang awalnya didefinisikan hanya untuk . Pada 1749, Euler sebenarnya telah membuat suatu konjektur yang ekuivalen dengan persamaan fungsional Riemann. Konjektur ini memberikan identitas fungsi eta Dirichlet (fungsi zeta ganti tanda):

Ternyata, hubungan ini dapat digunakan untuk menghitung ζ(s) pada daerah 0 < Re(s) < 1, i.e.
dengan deret pada fungsi η konvergen (walaupun tidak secara mutlak) pada bidang kompleks dengan bagian real s > 0 (untuk survei yang lebih mendetail mengenai sejarah persamaan fungsional Riemann, lihat Blagouchine[6][7]).

Riemann juga menemukan versi simetris dari persamaan fungsional dengan menerapkannya ke fungsi-xi:

yang memenuhi:
(Fungsi awal ξ(t) versi Riemann awalnya didefinisikan sedikit berbeda dengan versi sekarang)

Semasa Riemann, faktor pada persamaan fungsional Riemann tidak begitu dipahami, sampai John Tate (1950) membahasnya pada tesisnya. Ia menunjukkan bahwa "faktor Gamma" ini adalah faktor-L lokal yang berpadanan dengan tempat Archimedes (Archimedean places), sedangkan faktor lainnya pada ekspansi darab Euler adalah faktor-L lokal dari tempat nonArchimedes.

Nol, garis kritis, dan hipotesis Riemann[sunting | sunting sumber]

Fungsi zeta Riemann tidak memiliki nol nontrivial di sebelah kanan garis σ = 1 ataupun di sebelah kiri garis σ = 0 (begitupula di daerah yang cukup dekat dengan salah satu dari kedua garis ini). Selain itu, the nol fungsi zeta Riemann yang nontrivial bersifat simetris terhadap sumbu real dan garis σ = 12 dan, menurut hipotesis Riemann, semua nol nontrivial fungsi zeta Riemann terdapat pada garis σ = 12.
Gambar ini memberikan grafik fungsi Riemann zeta pada garis kritis untuk nilai real t bergerak dari 0 ke 34. Lima nol pertama pada pita kritis terlihat sebagai titik pada spiral yang melalui titik asal.
Bagian real (merah) dan bagian imajiner (biru) dari fungsi zeta Riemann pada garis kritis Re(s) = 1/2. Nol nontrivial pertama dapat dilihat pada Im(s) = ±14.135, ±21.022 and ±25.011.

Persamaan fungsional Riemann menunjukkan bahwa fungsi zeta Riemann memiliki nol pada −2, −4,.... Semua nol tersebut dikenal sebagai nol trivial, karena eksistensi semua nol ini relatif lebih mudah untuk dibuktikan, misalnya dari sin πs2 bernilai 0 pada persamaan fungsional. Nol nontrivial lebih menarik perhatian, karena tidak hanya distribusinya yang tidak begitu dipahami, namun utamanya karena nol nontrivial dari fungsi ini memiliki konsekuensi mengenai bilangan prima dan objek terkait pada teori bilangan. Hasil sejauh ini telah menunjukkan bahwa nol nontrivial fungsi zeta Riemann terdapat pada pita terbuka , yang disebut pita kritis. Himpunan disebut garis kritis. Hipotesis Riemann, salah satu masalah matematika belum terpecahkan yang paling sulit, mengklaim bahwa semua nol nontrivial terdapat pada garis kritis. Pada 1989, Conrey membuktikan bahwa lebih dari 40% nol nontrivial dari fungsi Riemann zeta terdapat pada garis kritis.[8]

Untuk fungsi zeta Riemann pada garis kritis, lihat Z-function.

Lima nol nontrivial pertama[9][10]
Nol
1/2 ± 14.134725 i
1/2 ± 21.022040 i
1/2 ± 25.010858 i
1/2 ± 30.424876 i
1/2 ± 32.935062 i
1/2 ± 37.586178 i

Banyak nol pada pita kritis[sunting | sunting sumber]

Misalkan adalah banyaknya nol dari pada pita kritis , yang bagian imajinernya berada pada selang . Trudgian membuktikan bahwa, jika , maka[11]

.

Konjektur Hardy–Littlewood[sunting | sunting sumber]

Pada 1914, Godfrey Harold Hardy membuktikan bahwa banyaknya nol real dari ζ (12 + it) adalah tak hingga.[12]

Hardy dan John Edensor Littlewood merumuskan dua konjektur mengenai kepadatan dan jarak antara nol-nol dari ζ (12 + it) pada selang di antara dua bilangan real positif yang cukup besar. Kali ini, misalkan N(T) adalah banyaknya nol real dan N0(T) adalah banyaknya nol dari fungsi ζ (12 + it) pada interval (0, T] yang memiliki orde ganjil.

  1. Untuk setiap ε > 0, terdapat T0(ε) > 0 sedemikian sehingga jika
    interval (T, T + H] memuat nol dengan orde ganjil.
  2. Untuk setiap ε > 0, terdapat T0(ε) > 0 dan cε > 0 sedemikian sehingga pertidaksamaan
    berlaku jika

Kedua konjektur ini memberikan pendekatan baru dalam menyelidiki fungsi zeta Riemann.

Daerah bebas nol[sunting | sunting sumber]

Dalam teori bilangan, lokasi nol dari fungsi zeta Riemann adalah hal yang sangatlah penting. Teorema bilangan prima ekuivalen dengan pernyataan bahwa tidak ada nol dari fungsi zeta Riemann yang berada pada garis Re(s) = 1.[13] Penggunaan teorema nilai rata-rata Vinogradov memberikan hasil yang lebih baik daripada hasil sebelumnya[14], bahwa ζ (σ + it) ≠ 0 jika and |t| ≥ 3.

Pada 2015, Mossinghoff dan Trudgian menunjukkan[15] bahwa fungsi zeta tidak memiliki nol pada daerah

untuk |t| ≥ 2. Hingga saat ini, daerah tersebut masih merupakan daerah bebas nol terbesar yang telah diketahui pada pita kritis dengan .

Perwujudan terkuat hasil semacam ini adalah terbuktinya hipotesis Riemann, yang akan memiliki banyak konsekuensi penting pada teori bilangan.

Hasil-hasil lain[sunting | sunting sumber]

Fungsi zeta Riemann memliki tak hingga banyaknya nol pada garis kritis. Littlewood menunjukkan bahwa jika barisan (γn) merupakan barisan bagian imajiner semua nol fungsi zeta Riemann pada setengah bidang atas diurutkan dari terkecil menuju terbesar, maka

Teorema garis kritis menyatakan bahwa perbandingan antara banyaknya nol pada garis kritis dan banyaknya nol pada pita kritis bernilai lebih besar daripada nol. (Hipotesis Riemann mengimplikasikan bahwa nilai perbandingan ini adalah 1.)

Pada pita kritis, nol dengan bagian imajiner nonnegatif terkecil adalah 12 + 14.13472514...i (OEISA058303). Karena

untuk setiap bilangan kompleks s ≠ 1, lokasi nol dari fungsi Riemann zeta simetris terhadap sumbu real. Dari simetri ini dan persamaan fungsional, nol nontrivial dari fungsi zeta Riemann simetris terhadap garis kritis Re(s) = 12.

Tidak ada nol dari fungsi zeta Riemann yang berada pada garis dengan bagian real 1.

Secara asimtotik, terdapat tak hingga nol pada garis kritis yang ordinatnya dapat ditentukan dengan menyelesaikan persamaan transedental yang aproksimasi solusinya diberikan sebagai berikut[remove orbutuh klarifikasi]:[16]

dengan adalah fungsi Lambert W.

Nilai spesifik[sunting | sunting sumber]

Untuk sembarang bilangan bulat positif 2n,

dengan B2n adalah bilangan Bernoulli ke-2n. Untuk bilangan ganjil positif, sejauh ini belum ditemukan rumus sederhana untuk mencari nilai fungsi zeta Riemann, walaupun nilai fungsi zeta Riemann untuk bilangan ganjil positif sepertinya memiliki kaitan dengan teori-K aljabar dari bilangan bulat; lihat nilai spesial fungsi-L.

Untuk bilangan bulat nonpositif,

untuk n ≥ 0 (dengan menggunakan konvensi B1 = −12). Khususnya, ζ bernilai nol pada bilangan genap negatif, karena Bm = 0 untuk semua bilangan ganjil m selain 1. Bilangan-bilangan ini biasanya disebut sebagai "nol trivial" dari fungsi zeta..

Melalui pengontinuan analitik, nilai

Hal ini yang sebenarnya menjadi dalih mengapa deret yang sebenarnya divergen 1 + 2 + 3 + 4 + ⋯ terkadang ditulis sama dengan , yang digunakan pada berbagai konteks tertentu (penjumlahan Ramanujan), seperti teori dawai.[17] Serupa, nilai
dapat dipandang sebagai menuliskan deret divergen 1 + 1 + 1 + 1 + ⋯ bernilai .

Nilai

digunakan untuk menghitung masalah kinetik batas lapisan pada persamaan kinetik linear.[18][19]

Walaupun

divergen, nilai prinsipal Cauchy
ada dan bernilai konstanta Euler-Mascheroni γ = 0.5772....[20]

Pembuktian bahwa nilai

dikenal sebagai masalah Basel. Kebalikan dari deret ini merupakan jawaban dari pertanyaan berikut: Berapa peluang dua bilangan yang terpilih secara acak bersifat relatif prima?[21] Nilai
adalah konstanta Apéry.

Dengan menggunakan limit pada bilangan real, nilai . Namun, pada tak hingga kompleks di permukaan bola Riemann, fungsi zeta Riemann memiliki kesingularan esensial.[22]

Sifat fungsi zeta Riemann[sunting | sunting sumber]

Untuk deret yang melibatkan nilai fungsi zeta pada himpunan bilangan bulat atau himpunan setengah bilangan bulat, lihat deret zeta rasional.

Kebalikan fungsi zeta Riemann[sunting | sunting sumber]

Kebalikan dari fungsi zeta Riemann dapat dituliskan sebagai deret Dirichlet pada fungsi Möbius μ(n):

untuk setiap bilangan kompleks s dengan bilangan real lebih besar daripada 1. Ada berbagai identitas serupa dengan kesamaan di atas yang melibatkan fungsi-fungsi multiplikatif yang biasa dikenal; yang dapat dillihat pada artikel deret Dirichlet.

Hipotesis Riemann ekuivalen dengan klaim bahwa identitas di atas juga berlaku apabila bagian real dari s lebih besar daripada 12.

Keuniversalan fungsi zeta Riemann[sunting | sunting sumber]

Pita kritis fungsi zeta Riemann memiliki sifat keuniversalan. Keuniversalan fungsi zeta Riemann menyatakan bahwa ada beberapa lokasi pada pita kritis yang dapat mengaproksimasi sembarang fungsi zeta Riemann dengan baik. Fungsi holomorfik merupakan fungsi yang sangatlah umum, sehingga ini adalah sifat yang luar biasa. Bukti pertama dari keuniversalan fungsi zeta Riemann diberikan oleh Sergei Mikhailovitch Voronin pada 1975.[23] Setelahnya, muncul artikel yang memuat versi "efektif" dari teorema Voronin[24] dan juga memperluas teorema tersebut pada fungsi-L Dirichlet.[25][26]

Estimasi dari modulus maksimum fungsi zeta Riemann[sunting | sunting sumber]

Misalkan fungsi F(T;H) dan G(s0;Δ) didefinisikan sebagai berikut

Variabel T di sini merepresentasikan suatu bilangan positif yang cukup besar, 0 < H ≪ log log T, s0 = σ0 + iT, 12σ0 ≤ 1, 0 < Δ < 13. Estimasi batas bawah F dan G memberikan gambaran seberapa besar (modulus) nilai ζ(s) pada subinterval kecil dari garis kritis atau pada lingkungan kecil dari titik-titik pada pita kritis 0 ≤ Re(s) ≤ 1.

Kasus H ≫ log log T diteliti oleh Kanakanahalli Ramachandra; sedangkan kasus Δ > c, dengan c adalah suatu konstanta yang cukup besar, bersifat trivial.

Anatolii Karatsuba, membuktikan,[27][28] khususnya, bahwa jika nilai H dan Δ melewati suatu konstanta cukup kecil tertentu, dua estimasi berikut

berlaku, dengan c1 dan c2 adalah suatu konstanta mutlak tertentu.

Referensi[sunting | sunting sumber]

  1. ^ "Jupyter Notebook Viewer". Nbviewer.ipython.org. Diakses tanggal 2017-01-04. 
  2. ^ Steuding, Jörn; Suriajaya, Ade Irma (1 November 2020). "Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines". Computational Methods and Function Theory. 20 (3): 389–401. doi:10.1007/s40315-020-00316-x. ISSN 2195-3724. S2CID 216323223. "Teorema 2 menyiratkan bahwa fungsi ζ memiliki singularitas di tak terhingga."
  3. ^ Bombieri, Enrico. "The Riemann Hypothesis – official problem description" (PDF). Clay Mathematics Institute. Diakses tanggal 2014-08-08. 
  4. ^ Devlin, Keith (2002). The Millennium Problems: The seven greatest unsolved mathematical puzzles of our time. New York: Barnes & Noble. hlm. 43–47. ISBN 978-0-7607-8659-8. 
  5. ^ Sandifer, Charles Edward (2007). How Euler Did It. Mathematical Association of America. hlm. 193. ISBN 978-0-88385-563-8. 
  6. ^ Blagouchine, I.V. (1 March 2018). The history of the functional equation of the zeta-function. Seminar on the History of Mathematics. St. Petersburg, RU: Steklov Institute of Mathematics;  "online PDF". 
  7. ^ Blagouchine, I.V. (2014). "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results". The Ramanujan Journal. 35 (1): 21–110. doi:10.1007/s11139-013-9528-5.  Blagouchine, I.V. (2017). "Addendum". The Ramanujan Journal. 42: 777–781. doi:10.1007/s11139-015-9763-z. 
  8. ^ Conrey, J. B. (1989). "More than two fifths of the zeros of the Riemann zeta function are on the critical line". J. Reine Angew. Math. 1989 (399): 1–26. doi:10.1515/crll.1989.399.1. MR 1004130. 
  9. ^ Eric Weisstein. "Riemann Zeta Function Zeros". Diakses tanggal 2021-04-24. 
  10. ^ The L-functions and Modular Forms Database. "Zeros of ζ(s)". 
  11. ^ Trudgian, Timothy S. (2014). "An improved upper bound for the argument of the Riemann zeta function on the critical line II". J. Number Theory. 134: 280–292. arXiv:1208.5846alt=Dapat diakses gratis. doi:10.1016/j.jnt.2013.07.017. 
  12. ^ Hardy, G. H.; Fekete, M.; Littlewood, J. E. (1921-09-01). "The Zeros of Riemann's Zeta-Function on the Critical Line". Journal of the London Mathematical Society. s1–1: 15–19. doi:10.1112/jlms/s1-1.1.15. 
  13. ^ Diamond, Harold G. (1982). "Elementary methods in the study of the distribution of prime numbers". Bulletin of the American Mathematical Society. 7 (3): 553–89. doi:10.1090/S0273-0979-1982-15057-1alt=Dapat diakses gratis. MR 0670132. 
  14. ^ Ford, K. (2002). "Vinogradov's integral and bounds for the Riemann zeta function". Proc. London Math. Soc. 85 (3): 565–633. arXiv:1910.08209alt=Dapat diakses gratis. doi:10.1112/S0024611502013655. 
  15. ^ Mossinghoff, Michael J.; Trudgian, Timothy S. (2015). "Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function". J. Number Theory. 157: 329–349. arXiv:1410.3926alt=Dapat diakses gratis. doi:10.1016/J.JNT.2015.05.010. 
  16. ^ LeClair, André; França, Guilherme. "Transcendental equations satisfied by the individual zeros of Riemann ζ, Dirichlet and modular L-functions". Communications in number theory and physics. 9 (1): 1–20. doi:10.4310/CNTP.2015.v9.n1.a1. 
  17. ^ Polchinski, Joseph (1998). An Introduction to the Bosonic String. String Theory. I. Cambridge University Press. hlm. 22. ISBN 978-0-521-63303-1. 
  18. ^ Kainz, A. J.; Titulaer, U. M. (1992). "An accurate two-stream moment method for kinetic boundary layer problems of linear kinetic equations". J. Phys. A: Math. Gen. 25 (7): 1855–1874. Bibcode:1992JPhA...25.1855K. doi:10.1088/0305-4470/25/7/026. 
  19. ^ Further digits and references for this constant are available at OEISA059750.
  20. ^ Sondow, Jonathan (1998). "An antisymmetric formula for Euler's constant". Mathematics Magazine. 71 (3): 219–220. doi:10.1080/0025570X.1998.11996638. Diarsipkan dari versi asli tanggal 2011-06-04. Diakses tanggal 2006-05-29. 
  21. ^ Ogilvy, C. S.; Anderson, J. T. (1988). Excursions in Number Theory. Dover Publications. hlm. 29–35. ISBN 0-486-25778-9. 
  22. ^ Steuding, Jörn; Suriajaya, Ade Irma (2020-11-01). "Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines". Computational Methods and Function Theory (dalam bahasa Inggris). 20 (3): 389–401. doi:10.1007/s40315-020-00316-x. ISSN 2195-3724. Theorem 2 implies that ζ has an essential singularity at infinity 
  23. ^ Voronin, S. M. (1975). "Theorem on the Universality of the Riemann Zeta Function". Izv. Akad. Nauk SSSR, Ser. Matem. 39: 475–486.  Reprinted in Math. USSR Izv. (1975) 9: 443–445.
  24. ^ Ramūnas Garunkštis; Antanas Laurinčikas; Kohji Matsumoto; Jörn Steuding; Rasa Steuding (2010). "Effective uniform approximation by the Riemann zeta-function". Publicacions Matemàtiques. 54 (1): 209–219. doi:10.1090/S0025-5718-1975-0384673-1alt=Dapat diakses gratis. JSTOR 43736941. 
  25. ^ Bhaskar Bagchi (1982). "A Joint Universality Theorem for Dirichlet L-Functions". Mathematische Zeitschrift. 181 (3): 319–334. doi:10.1007/bf01161980. ISSN 0025-5874. 
  26. ^ Steuding, Jörn (2007). Value-Distribution of L-Functions. Lecture Notes in Mathematics. 1877. Berlin: Springer. hlm. 19. arXiv:1711.06671alt=Dapat diakses gratis. doi:10.1007/978-3-540-44822-8. ISBN 978-3-540-26526-9. 
  27. ^ Karatsuba, A. A. (2001). "Lower bounds for the maximum modulus of ζ(s) in small domains of the critical strip". Mat. Zametki. 70 (5): 796–798. 
  28. ^ Karatsuba, A. A. (2004). "Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line". Izv. Ross. Akad. Nauk, Ser. Mat. 68 (8): 99–104. Bibcode:2004IzMat..68.1157K. doi:10.1070/IM2004v068n06ABEH000513.