Barisan dan deret geometri

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Loncat ke navigasi Loncat ke pencarian

Barisan dan deret geometri atau dikenal sebagai barisan dan deret ukur dalam bidang matematika adalah jenis barisan dan deret di mana bilangan berikutnya merupakan perkalian dari bilangan sebelumnya dengan suatu bilangan rasio tertentu. Dengan kata lain, suatu barisan geometri hasil bagi atau rasio setiap suku dengan suku sebelumnya selalu sama.[1]

Barisan geometri dapat dinyatakan dengan rumus sebagai berikut:

, , , ,

dengan adalah bilangan rasio pengali () dan adalah faktor skala.

Suku barisan geometri[sunting | sunting sumber]

Misal adalah suku barisan geometri. Pada barisan di atas, dapat kita rumuskan sebagai

Bukti

Kita misalkan , dan . Kita teruskan untuk .

Dari kumpulan persamaan di atas, kita mendapati pola, yaitu

.[1]

Lebih umumnya, diberikan dan misal suku awal adalah . Dari hasil di atas, diperoleh

dan

.[1]

Rasio[sunting | sunting sumber]

Rasio adalah hasil bagi antara dua suku. Secara matematis dirumuskan

.

Suku tengah[sunting | sunting sumber]

Deret geometri[sunting | sunting sumber]

Deret geometri atau deret ukur ialah deret dimana suku pada barisan geometri dijumlahkan, maka didapati

dengan adalah deret geometri, dan adalah suku pertama.

Bukti deret geometri
Kita mulai dari kasus dimana

 

 

 

 

(1)

Dengan mengalikan kedua ruas dengan memperoleh persamaan baru.

 

 

 

 

(2)

Persamaan (1) mengurangi (2) menghasilkan

Dengan menggunakan sifat distributif dan membagi kedua ruas dengan membuktikan bahwa

.[2]

Cara yang serupa untuk kasus .

Jika , maka deret geometri didapati

.[2]
Deret geometri takhingga[sunting | sunting sumber]
Diagram yang menunjukkan jumlah adalah mendekati .

Untuk deret geometri dengan tak terhingganya banyak suku, kita rumuskan

untuk . Sebagai contoh, pada diagram di samping kanan, diketahui bahwa suku awal (yakni persegi terbesar) adalah serta . Dengan menggunakan rumus di atas, maka jumlah keseluruhan pada diagram di samping adalah

.


Bukti deret geometri, kasus
Visualisasi yang menunjukkan cara lain untuk membuktikan deret geometri.
Karena , maka diperoleh
.

Ambil pada kedua ruas, diperoleh

Karena diketahui , maka . Karena itu,

. [3]

Untuk kasus , tidak mempunyai hasil (karena bernilai ) sehingga deretnya dapat dikatakan divergen.[4][5]


Deret geometri ganjil dan genap[sunting | sunting sumber]

untuk bilangan ganjil.
untuk bilangan genap.

Rumus umum[sunting | sunting sumber]

untuk r < 1
untuk r > 1
untuk -1 < r < 1
untuk tingkat berderajat 1

Barisan dan deret geometri bertingkat[sunting | sunting sumber]

Jika bertingkat 2:
Jika bertingkat 3:

dst

Catatan tambahan[sunting | sunting sumber]

Rumus banyak bakteri: dimana .
Rumus panjang lintasan: atau .

Lihat pula[sunting | sunting sumber]

Referensi[sunting | sunting sumber]

  1. ^ a b c Sahid, MSc, Kalkulus Lanjutan, hlm. 10.
  2. ^ a b Drs. Win Konadi, M.Si, Barisan dan Deret Geometri serta Contoh Soal
  3. ^ Sahid, MSc, Kalkulus Lanjutan, hlm. 12–13.
  4. ^ Sahid, MSc, Kalkulus Lanjutan, hlm. 12.
  5. ^ H. Karso, Barisan dan Deret, hlm. 14.

Bacaan lebih lanjut[sunting | sunting sumber]

  • Kurnianingsih, Sri (2007). Matematika SMA dan MA 3B Untuk Kelas XII Semester 2 Program IPA. Jakarta: Esis/Erlangga. ISBN 979-734-505-X.  (Indonesia)
  • Kurnianingsih, Sri (2007). Matematika SMA dan MA 3B Untuk Kelas XII Semester 2 Program IPS. Jakarta: Esis/Erlangga. ISBN 979-734-568-8.  (Indonesia)