Fungsi bilangan bulat terbesar dan terkecil



Dalam matematika, khususnya di bidang teori bilangan dan ilmu komputer, suatu fungsi dikatakan fungsi atap (ceiling function), dinotasikan oleh , adalah fungsi yang memetakan bilangan real ke bilangan bulat terkecil yang lebih besar daripada atau sama dengan [1]. Sebagai contoh, nilai dari . Fungsi atap juga dapat disebut fungsi bilangan bulat terkecil[2].
Sebaliknya, suatu fungsi dikatakan fungsi lantai (floor function), dinotasikan oleh , adalah fungsi yang memetakan bilangan real ke bilangan bulat terbesar yang lebih kecil daripada atau sama dengan [1]. Sebagai contoh, nilai dari . Fungsi lantai juga dapat disebut fungsi bilangan bulat terbesar[2].
Galibnya, definisi pada fungsi bilangan bulat terbesar dan terkecil dapat ditulis sebagai
dan .[1]
Hubungan kedua fungsi di atas dapat diterapkan pada salah satu fungsi berikut, yaitu bagian bilangan bulat (bahasa Inggris: integer part), di mana bilangan real yang dipetakan ke fungsi tersebut sehingga menjadi bilangan bulat yang muncul sebelum bilangan desimal, dilambangkan atau terkadang dinotasikan sebagai [3] dan dirumuskan sebagai[3][4]
.
Untuk memahami lebih lanjut, tinjau yang bernilai , maka . Hal yang serupa dengan bilangan bertandakan negatif, contohnya sederhananya, .
Sejarah[sunting | sunting sumber]
![]() | Bagian ini kosong. Anda bisa membantu dengan melengkapinya. |
Sifat dan identitas[sunting | sunting sumber]
Beberapa sifat yang terkandung dalam fungsi bilangan bulat besar dan fungsi bilangan bulat terkecil adalah sebagai berikut:[5]
- untuk suatu bilangan real.
- dan jika dan hanya jika adalah bilangan bulat.
- jika adalah bilangan real dan bila bilangan bulat.
- Untuk suatu bilangan bulat, .
Untuk sifat fungsi bagian bilangan bulat, antara lain
Beberapa penulis mendefinisikan bagian bulat sebagai fungsi bilangan bulat terbesar, menggunakan notasi berikut:[6][7][8]
- untuk adalah bilangan bulat.
Kalkulus[sunting | sunting sumber]
Turunan[sunting | sunting sumber]
Turunan fungsi bilangan bulat terbesar dan terkecil tidak terdiferensialkan bila adalah bilangan bulat. Bila bukanlah bilangan bulat, maka turunannya terdiferensialkan di mana-mana[9], yakni bernilai 0.
Integral[sunting | sunting sumber]
Dalam integral, fungsi bilangan bulat terbesar dapat dinyatakan sebagai
- .[10]
Hal yang serupa dengan fungsi bilangan bulat terkecil,
- .[11]
Representasi deret[sunting | sunting sumber]
Dalam representasi deret, fungsi bilangan bulat terbesar dirumuskan sebagai berikut:
- Dalam bentuk deret Fourier, dirumuskan
asalkan bilangan real dan bukan bilangan bulat.[12]
Hal yang serupa dengan fungsi bilangan bulat terkecil.
- Dalam bentuk deret Fourier, dirumuskan
asalkan bilangan real dan bukan bilangan bulat.[13]
Rujukan[sunting | sunting sumber]
- ^ a b c Sukardi, mathcyber1997.com: Materi, Soal, dan Pembahasan - Fungsi Lantai dan Fungsi Atap. Diakses pada 5 Agustus 2023.
- ^ a b Gatot Muhsetyo (2019). Matematika Diskrit. Tanggerang Selatan: Universitas Terbuka. ISBN 9786023924127. Diarsipkan dari versi asli tanggal 2023-06-02. Diakses tanggal 2023-05-22.
- ^ a b Weisstein, Eric W. "Integer Part". mathworld.wolfram.com (dalam bahasa Inggris). Diarsipkan dari versi asli tanggal 2023-06-23. Diakses tanggal 2021-11-17.
- ^ "integer part". planetmath.org. Diarsipkan dari versi asli tanggal 2021-05-06. Diakses tanggal 2021-11-16.
- ^ "Properties of Floors and Ceilings". www.bookofproofs.org. Diarsipkan dari versi asli tanggal 2021-11-16. Diakses tanggal 2021-11-16.
- ^ Luke Heaton, A Brief History of Mathematical Thought, 2015, ISBN 1472117158 (n.p.)
- ^ Albert A. Blank et al., Calculus: Differential Calculus, 1968, hlm. 259
- ^ John W. Warris, Horst Stocker, Handbook of mathematics and computational science, 1998, ISBN 0387947469, hlm. 151
- ^ "Differentiable". www.mathsisfun.com. Diarsipkan dari versi asli tanggal 2023-03-09. Diakses tanggal 2021-11-24.
- ^ "Floor function: Integration (subsection 21/01/01)". functions.wolfram.com. Diarsipkan dari versi asli tanggal 2019-09-13. Diakses tanggal 2021-11-24.
- ^ "Ceiling function: Integration (subsection 21/01/01)". functions.wolfram.com. Diarsipkan dari versi asli tanggal 2021-11-24. Diakses tanggal 2021-11-24.
- ^ "Floor function: Series representations (subsection 06/01)". functions.wolfram.com. Diarsipkan dari versi asli tanggal 2021-11-26. Diakses tanggal 2021-11-26.
- ^ "Ceiling function: Series representations". functions.wolfram.com. Diarsipkan dari versi asli tanggal 2021-11-24. Diakses tanggal 2021-11-26.