Lipid

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Struktur beberapa lipid umum. Di bagian atas adalah asam oleat[1] dan kolesterol.[2] Struktur bagian tengah adalah trigliserida yang terdiri dari rantai oleoil, stearoil, dan palmitoil yang melekat pada kerangka gliserol. Di bagian bawah adalah fosfolipid yang umum, fosfatidilkolina.[3]

Lipid mengacu pada golongan senyawa hidrokarbon alifatik nonpolar dan hidrofobik. Karena nonpolar, lipid tidak larut dalam pelarut polar seperti air, tetapi larut dalam pelarut nonpolar, seperti alkohol, eter atau kloroform. Fungsi biologis terpenting lipid di antaranya untuk menyimpan energi, sebagai komponen struktural membran sel, dan sebagai pensinyalan molekul.

Lipid adalah senyawa organik yang diperoleh dari proses dehidrogenasi endotermal rangkaian hidrokarbon. Lipid bersifat amfifilik, artinya lipid mampu membentuk struktur seperti vesikel, liposom, atau membran lain dalam lingkungan basah. Lipid biologis seluruhnya atau sebagiannya berasal dari dua jenis subsatuan atau "blok bangunan" biokimia: gugus ketoasil dan gugus isoprena.[4] Dengan menggunakan pendekatan ini, lipid dapat dibagi ke dalam delapan kategori:[5] asil lemak, gliserolipid, gliserofosfolipid, sfingolipid, sakarolipid, dan poliketida (diturunkan dari kondensasi subsatuan ketoasil); serta lipid sterol dan lipid prenol (diturunkan dari kondensasi subsatuan isoprena).

Meskipun istilah lipid kadang-kadang digunakan sebagai sinonim dari lemak. Lipid juga meliputi molekul-molekul seperti asam lemak dan turunan-turunannya (termasuk tri-, di-, dan monogliserida dan fosfolipid, juga metabolit yang mengandung sterol, seperti kolesterol.[6] Meskipun manusia dan mamalia memiliki metabolisme untuk memecah dan membentuk lipid, beberapa lipid tidak dapat dihasilkan melalui cara ini dan harus diperoleh melalui makanan.

Kategori lipid[sunting | sunting sumber]

Asam lemak[sunting | sunting sumber]

Asam lemak atau asil lemak ialah istilah umum yang digunakan untuk menjabarkan bermacam-ragam molekul-molekul yang disintesis dari polimerisasi asetil-KoA dengan gugus malonil-KoA atau metilmalonil-KoA di dalam sebuah proses yang disebut sintesis asam lemak.[7][8] Asam lemak terdiri dari rantai hidrokarbon yang berakhiran dengan gugus asam karboksilat; penyusunan ini memberikan molekul ujung yang polar dan hidrofilik, dan ujung yang nonpolar dan hidrofobik yang tidak larut di dalam air. Struktur asam lemak merupakan salah satu kategori paling mendasar dari biolipid biologis dan dipakai sebagai blok bangunan dari lipid dengan struktur yang lebih kompleks. Rantai karbon, biasanya antara empat sampai 24 panjang karbon,[9] baik yang jenuh ataupun tak jenuh dan dapat dilekatkan ke dalam gugus fungsional yang mengandung oksigen, halogen, nitrogen, dand belerang. Ketika terdapat sebuah ikatan valensi ganda, terdapat kemungkinan isomerisme geometri cis atau trans, yang secara signifikan memengaruhi konfigurasi molekuler molekul tersebut. Ikatan ganda-cis menyebabkan rantai asam lemak menekuk, dan hal ini menjadi lebih mencolok apabila terdapat ikatan ganda yang lebih banyak dalam suatu rantai. Pada gilirannya, ini memainkan peranan penting di dalam struktur dan fungsi membran sel.[10]

Asam lemak yang paling banyak muncul di alam memiliki konfigurasi cis, meskipun bentuk trans wujud di beberapa lemak dan minyak yang dihidrogenasi secara parsial.[11]

Contoh asam lemak yang penting secara biologis adalah eikosanoid, utamanya diturunkan dari asam arakidonat dan asam eikosapentaenoat, yang meliputi prostaglandin, leukotriena, dan tromboksana. Kelas utama lain dalam kategori asam lemak adalah ester lemak dan amida lemak. Ester lemak meliputi zat-zat antara biokimia yang penting seperti ester lilin, turunan-turunan asam lemak tioester koenzim A, turunan-turunan asam lemak tioester ACP, dan asam lemak karnitina. Amida lemak meliputi senyawa N-asiletanolamina, seperti penghantar saraf kanabinoid anandamida.[12]

Asam lemak adalah asam alkanoat dengan rumus bangun hidrokarbon yang panjang. Rantai hidrokarbon tersebut dapat mencapat 10 hingga 30 atom. Rantai alkana yang non polar mempunyai peran yang sangat penting demi mengimbangi kebasaan gugus hidroksil.

Pada senyawa asam dengan sedikit atom karbon, gugus asam akan mendominasi sifat molekul dan memberikan sifat polar kimiawi. Walaupun demikian pada asam lemak, rantai alkanalah yang mendominasi sifat molekul.[13]

Asam lemak terbagi menjadi:

  • Asam lemak jenuh
  • Asam lemak tak jenuh
  • Garam dari asam lemak
  • Prostaglandin

Gliserolipid[sunting | sunting sumber]

Gliserolipid tersusun atas gliserol bersubstitusi mono-, di-, dan tri-,[14] yang paling terkenal adalah ester asam lemak dari gliserol (triasilgliserol), yang juga dikenal sebagai trigliserida. Di dalam persenyawaan ini, tiga gugus hidroksil gliserol masing-masing teresterifikasi, biasanya oleh asam lemak yang berbeda. Karena ia berfungsi sebagai cadangan makanan, lipid ini terdapat dalam sebagian besar lemak cadangan di dalam jaringan hewan. Hidrolisis ikatan ester dari triasilgliserol dan pelepasan gliserol dan asam lemak dari jaringan adiposa disebut "mobilisasi lemak".[15]

Subkelas gliserolipid lainnya adalah glikosilgliserol, yang dikarakterisasi dengan keberadaan satu atau lebih residu monosakarida yang melekat pada gliserol via ikatan glikosidik. Contoh struktur di dalam kategori ini adalah digalaktosildiasilgliserol yang dijumpai di dalam membran tumbuhan[16] dan seminolipid dari sel sperma mamalia.[17]

Gliserida adalah ester dari asam lemak dan sejenis alkohol dengan tiga gugus fungsional yang disebut gliserol (nama IUPAC, 1,2,3-propantriol). Karena gliserol memiliki tiga gugus fungsional alkohol, asam lemak akan bereaksi untuk membuat tiga gugus ester sekaligus.[18] Gliserida dengan tiga gugus ester asam lemak disebut trigliserida. Jenis asam lemak yang terikat pada ketiga gugus tersebut seringkali tidak berasal dari kelas asam lemak yang sama.

Fosfolipid[sunting | sunting sumber]

Fosfatidiletanolamina[3]

(Glisero)fosfolipid (bahasa Inggris: phospholipid, phosphoglycerides, glycerophospholipid) sangat mirip dengan trigliserida dengan beberapa perkecualian. Fosfolipid terbentuk dari gliserol (nama IUPAC, 1,2,3-propantriol) dengan dua gugus alkohol yang membentuk gugus ester dengan asam lemak (bisa jadi dari kelas yang berbeda), dan satu gugus alkohol membentuk gugus ester dengan asam fosforat.[19]

Gliserofosfolipid, juga dirujuk sebagai fosfolipid, terdapat cukup banyak di alam dan merupakan komponen kunci sel lipd dwilapis, serta terlibat di dalam metabolisme dan sinyal komunikasi antar sel. Jaringan saraf termasuk otak, mengandung cukup banyak gliserofosfolipid. Perubahan komposisi zat ini dapat mengakibatkan berbagai kelainan saraf.[20]

Contoh gliserofosfolipid yang ditemukan di dalam membran biologis adalah fosfatidilkolina (juga dikenal sebagai PC, GPCho, atau lesitin), fosfatidiletanolamina (PE atau GPEtn), dan fosfatidilserina (PS atau GPSer). Selain berperan sebagai komponen primer membran sel dan tempat perikatan bagi protein intra- dan antarseluler, beberapa gliserofosfolipid di dalam sel-sel eukariotik, seperti fosfatidilinositol dan asam fosfatidat adalah prekursor, ataupun sendirinya adalah kurir kedua yang diturunkan dari membran.[21] Biasanya, satu atau kedua gugus hidroksil ini terasilasi dengan asam lemak berantai panjang, meskit terdapat gliserofosfolipid yang terikat dengan alkil dan 1Z-alkenil (plasmalogen). Terdapat juga varian dialkileter pada arkaebakteria.[22]

Gliserofosfolipid dapat dibagi menurut sifat kelompok-kepala polar pada posisi sn-3 dari tulang belakang gliserol pada eukariota dan eubakteria, atau posisi sn-1 dalam kasus archaea.[23]

Karena pada gugus ester asam fosforat masih mempunyai satu ikatan valensi yang bebas, biasanya juga membentuk gugus ester dengan alkohol yang lain, misalnya alkohol amino seperti kolina, etanolamina dan serina. Fosfolipid merupakan komponen yang utama pada membran sel lapisan lemak. Fosfolipid yang umum dijumpai adalah:

  • Lecitin yang mengandung alkohol amino jenis kolina
  • Kepalin yang mengandung alkohol amino jenis serina atau etanolamina.

Sifat fosfolipid bergantung dari karakter asam lemak dan alkohol amino yang diikatnya.

Sfingolipid[sunting | sunting sumber]

Sfingomielin[3]

Sfingolipid adalah keluarga kompleks dari senyawa-senyawa[24] yang berbagi fitur struktural yang sama, yaitu kerangka dasar basa sfingoid yang disintesis secara de novo dari asam amino serina dan asil lemak KoA berantai panjang, yang kemudian diubah menjadi seramida, fosfosfingolipid, glisosfingolipid, dan senyawa-senyawa lainnya.

Nama sfingolipid diambil dari mitologi Yunani, Spinx, setengah wanita dan setengah singa yang membinasakan siapa saja yang tidak dapat menjawab teka-tekinya. Sfingolipid ditemukan oleh Johann Thudichum pada tahun 1874 sebagai teka-teki yang sangat rumit dari jaringan otak.

Sfingolipid adalah jenis lemak kedua yang ditemukan di dalam membran sel, khususnya pada sel saraf dan jaringan otak. Lemak ini tidak mengandung gliserol, tetapi dapat menahan dua gugus alkohol pada bagian tengah kerangka amina.[25]

Fosfosfingolipid utama pada mamalia adalah sfingomielin (seramida fosfokolina),[26] sementara pada serangga terutama mengandung seramida fosfoetanolamina[27] dan pada fungi memiliki fitoseramida fosfoinositol dan gugus kepala yang mengandung manosa.[28]

Basa sfingoid utama mamalia biasa dirujuk sebagai sfingosina. Seramida (Basa N-asil-sfingoid) adalah subkelas utama turunan basa sfingoid dengan asam lemak yang terikat pada amida. Asam lemaknya biasanya jenuh ataupun mono-takjenuh dengan panjang rantai dari 16 atom karbon sampai dengan 26 atom karbon.[29]

Glikosfingolipid adalah sekelompok molekul beraneka ragam yang tersusun dari satu residu gula atau lebih yang terhubung ke basa sfingoid melalui ikatan glikosidik.

Lipid sterol[sunting | sunting sumber]

Lipid sterol, seperti kolesterol dan turunannya, adalah komponen lipid membran yang penting,[30] bersamaan dengan gliserofosfolipid dan sfingomielin. Steroid, semuanya diturunkan dari struktur inti empat-cincin lebur yang sama, memiliki peran biologis yang bervariasi seperti hormon dan molekul pensinyalan. Steroid 18-karbon (C18) meliputi keluarga estrogen, sementara steroid C19 terdiri dari androgen seperti testosteron dan androsteron. Subkelas C21 meliputi progestagen, juga glukokortikoid dan mineralokortikoid.[31] Sekosteroid, terdiri dari bermacam ragam bentuk vitamin D, dikarakterisasi oleh perpecahan cincin B dari struktur inti.[32] Contoh lain dari lemak sterol adalah asam empedu dan konjugat-konjugatnya,[33] yang pada mamalia merupakan turunan kolesterol yang dioksidasi dan disintesis di dalam hati. Pada tumbuhan, senyawa yang setara adalah fitosterol, seperti beta-Sitosterol, stigmasterol, dan brasikasterol; senyawa terakhir ini juga digunakan sebagai bagi pertumbuhan alga.[34] Sterol dominan di dalam membran sel fungi adalah ergosterol.[35]

Lipid prenol[sunting | sunting sumber]

Lipid prenol disintesis dari prekursor berkarbon 5 isopentenil pirofosfat dan dimetilalil pirofosfat yang sebagian besar dihasilkan melalui lintasan asam mevalonat (MVA).[36] Isoprenoid sederhana (alkohol linear, difosfat, dan lain-lain) terbentuk dari adisi unit C5 yang terus menerus, dan diklasifikasi menurut banyaknya satuan terpena ini. Struktur yang mengandung lebih dari 40 karbon dikenal sebagai politerpena. Karotenoid adalah isoprenoid sederhana yang penting yang berfungsi sebagai antioksidan dan sebagai prekursor vitamin A.[37] Contoh kelas molekul yang penting secara biologis lainnya adalah kuinon dan hidrokuinon yang mengandung ekor isoprenoid yang melekat pada inti kuinonoid yang tidak berasal dari isoprenoid.[38] Vitamin E dan vitamin K, juga ubikuinon, adalah contoh kelas ini. Prokariota mensintesis poliprenol (disebut baktoprenol) yang satuan isoprenoid terminalnya yang melekat pada oksigen tetap tak jenuh, sedangkan pada poliprenol hewan (dolikol) isoprenoid terminalnya telah direduksi.[39]

Sakarolipid[sunting | sunting sumber]

Struktur sakarolipid Kdo2-Lipid A.[40] Residu glukosamina berwarna biru, residu Kdo berwarna merah, rantai asil berwarna hitam, dan gugus fosfat berwarna hijau.

Sakarolipid (bahasa Inggris: saccharolipid, glucolipid) adalah asam lemak yang terikat langsung dengan molekul glukosa[41] dan membentuk struktur yang sesuai dengan membran dwilapis. Pada sakarolipid, monosakarida mengganti ikatan gliserol dengan asam lemak, seperti yang terjadi pada gliserolipid dan gliserofosfolipid.

Sakarolipid yang paling dikenal adalah prekursor glukosamina terasilasi dari komponen lipid A lipopolisakarida pada bakteri gram-negatif. Molekul Lipid-A yang umum adalah disakarida dari glukosamina, yang diturunkan sebanyak tujuh rantai asil-lemak. Lipopolisakarida minimal yang diperlukan untuk pertumbuhan E. coli adalah Kdo2-Lipid A, yakni disakarida berheksa-asil dari glukosamina yang diglikosilasikan dengan dua residu asam 3-deoksi-D-mano-oktulosonat (Kdo).[40]

Proses hidrolisis sakarolipid akan menghasilkan amino gula.[42]

Poliketida[sunting | sunting sumber]

Poliketida adalah metabolit sekunder yang terbentuk melalui proses polimerisasi dari asetil dan propionil oleh enzim klasik maupun enzim iteratif dan multimodular yang berbagi fitur mekanistik yang sama dengan asam lemak sintasi. Enzim yang sering digunakan adalah poliketida sintase,[43] melalui proses kondensasi Claisen.

Poliketida merupakan metabolit sekunder yang dihasilkan secara alami oleh bakteri, fungi, tumbuhan, hewan, sumber daya laut dan organisme yang memiliki keanekaragaman struktural yang tinggi.[44][45]

Banyak poliketida berupa molekul siklik yang kerangkanya seringkali dimodifikasi lebih jauh melalui glikosilasi, metilasi, hidroksilasi, oksidasi, dan/atau proses lainnya untuk menimba manfaat dari sifat antibiotik[46] yang dimiliki. Beberapa jenis poliketida bahkan bersifat anti kanker, dapat menurunkan kolesterol serta menunjukkan efek imuno-supresif.[47]

Sejumlah senyawa antimikroba, antiparasit, dan antikanker merupakan poliketida atau turunannya, seperti eritromisin, antibiotik tetrasiklin, avermektin, dan antitumor epotilon.[48]

Garam lemak[sunting | sunting sumber]

Sabun adalah campuran dari natrium hidroksida berbagai asam lemak yang terdapat di alam bebas.[49]

Sabun terbuat melalui proses saponifikasi asam lemak. Biasanya digunakan natrium karbonat atau natrium hidroksida untuk proses tersebut.

Secara umum, reaksi hidrolisis yang terjadi dapat dirumuskan:

asam lemak + NaOH ---> air + garam asam lemak

Jenis sabun yang dihasilkan bergantung pada jenis asam lemak dan panjang rantai karbonnya. Natrium stearat dengan 18 karbon adalah sabun yang sangat keras dan tidak larut. Seng stearat digunakan pada bedak talkum karena bersifat hidrofobik. Asam laurat dengan 12 karbon yang telah menjadi natrium laurat sangat mudah terlarut, sedangkan asam lemak dengan kurang dari 10 atom karbon tidak digunakan menjadi sabun karena dapat menimbulkan iritasi pada kulit dan berbau kurang sedap.

Parafin[sunting | sunting sumber]

Parafin (bahasa Inggris: wax) adalah lemak yang terbentuk dari esterisasi alkohol yang mempunyai rumus bangun yang panjang, dengan asam lemak.[50] Alkohol dapat mengandung 12 hingga 23 atom karbon. Parafin dapat ditemukan di alam sebagai pelindung daun dan sel batang untuk mencegah agar tanaman tidak kehilangan air terlalu banyak. Karnuba ditemukan pada dedaunan pohon palem Brasil dan digunakan sebagai pelumas untuk lantai maupun mobil. Lanolin adalah parafin pada bulu domba. Beeswax adalah cairan parafin yang disekresi lebah untuk membangun sel tempat untuk madu dan telur lebah.

Parafin yang digunakan pada pembuatan lilin bukan melalui esterisasi, melainkan merupakan campuran dari alkana dengan berat molekul yang besar. Pelumas untuk telinga dibuat dari campuran fosfolipid dan ester dari kolesterol.

Lihat pula[sunting | sunting sumber]

Referensi[sunting | sunting sumber]

  1. ^ Stryer et al., p. 328.
  2. ^ Maitland, Jr Jones (1998). Organic Chemistry. W W Norton & Co Inc (Np). hlm. 139. ISBN 0-393-97378-6. 
  3. ^ a b c Stryer et al., p. 330.
  4. ^ Fahy E, Subramaniam S, Brown HA, et al. (2005). "A comprehensive classification system for lipids". Journal of Lipid Research 46 (5): 839–61. doi:10.1194/jlr.E400004-JLR200. PMID 15722563. 
  5. ^ (Inggris)"Lipid Classification Scheme". Nature Lipidomics Gateway. Diakses 2010-02-21. 
  6. ^ Michelle A, Hopkins J, McLaughlin CW, Johnson S, Warner MQ, LaHart D, Wright JD. (1993). Human Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall. ISBN 0-13-981176-1. OCLC 32308337. 
  7. ^ Vance JE, Vance DE. (2002). Biochemistry of Lipids, Lipoproteins and Membranes. Amsterdam: Elsevier. ISBN 0444511393. OCLC 51001207. 
  8. ^ ed. by H. Alex Brown. (2007). Lipodomics and Bioactive Lipids: Mass Spectrometry Based Lipid Analysis, Volume 432 (Methods in Enzymology). Boston: Academic Press. ISBN 0123738954. OCLC 166624879. 
  9. ^ Hunt SM, Groff JL, Gropper SAS. (1995). Advanced Nutrition and Human Metabolism. Belmont, CA: West Pub. Co. hlm. 98. ISBN 0-314-04467-1. 
  10. ^ Devlin, pp. 193–95.
  11. ^ Hunter JE. (November 2006). "Dietary trans fatty acids: review of recent human studies and food industry responses". Lipids 41 (11): 967–92. doi:10.1007/s11745-006-5049-y. PMID 17263298. 
  12. ^ Fezza F, De Simone C, Amadio D, Maccarrone M. (2008). "Fatty acid amide hydrolase: a gate-keeper of the endocannabinoid system". Subcellular Biochemistry 49: 101–32. doi:10.1007/978-1-4020-8831-5_4. PMID 18751909. 
  13. ^ (Inggris)"Fatty acids". Elmhurst College, Charles E. Ophardt. Diakses 2010-02-22. 
  14. ^ Coleman RA, Lee DP. (2004). "Enzymes of triacylglycerol synthesis and their regulation". Progress in Lipid Research 43: 134–76. doi:10.1016/S0163-7827(03)00051-1. 
  15. ^ van Holde and Mathews, p. 630–31.
  16. ^ Hölzl G, Dörmann P. (2007). "Structure and function of glycoglycerolipids in plants and bacteria". Progress in Lipid Research 46 (5): 225–43. doi:10.1016/j.plipres.2007.05.001. PMID 17599463. 
  17. ^ Honke K, Zhang Y, Cheng X, Kotani N, Taniguchi N. (2004). "Biological roles of sulfoglycolipids and pathophysiology of their deficiency". Glycoconjugates Journal 21 (1–2): 59–62. doi:10.1023/B:GLYC.0000043749.06556.3d. PMID 15467400. 
  18. ^ (Inggris)"Triglycerides". Elmhurst College, Charles E. Ophardt. Diakses 2010-02-23. 
  19. ^ (Inggris)"Phosphoglycerides or Phospholipids". Elmhurst College, Charles E. Ophardt. Diakses 2010-02-23. 
  20. ^ Farooqui AA, Horrocks LA, Farooqui T. (2000). "Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders". Chemistry and Physics of Lipids 106 (1): 1–29. doi:10.1016/S0009-3084(00)00128-6. PMID 10878232. Diakses 2009-04-12. 
  21. ^ van Holde and Mathews, p. 844.
  22. ^ Paltauf F. (1994). "Ether lipids in biomembranes". Chemistry and Physics of Lipids 74 (2): 101–39. doi:10.1016/0009-3084(94)90054-X. PMID 7859340. 
  23. ^ Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA. (2007). "Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry". Methods in Enzymology 432: 21–57. doi:10.1016/S0076-6879(07)32002-8. PMID 17954212. 
  24. ^ Merrill AH, Sandhoff K. (2002). "Sphingolipids: metabolism and cell signaling",in New Comprehensive Biochemistry: Biochemistry of Lipids, Lipoproteins,and Membranes, Vance, D.E. and Vance, J.E., eds. Elsevier Science, NY. Ch. 14.
  25. ^ (Inggris)"Sphingolipids". Elmhurst College, Charles E. Ophardt. Diakses 2010-02-22. 
  26. ^ Hori T, Sugita M (1993). "Sphingolipids in lower animals". Prog. Lipid Res. 32 (1): 25–45. doi:10.1016/0163-7827(93)90003-F. PMID 8415797. 
  27. ^ Wiegandt H. (1992). "Insect glycolipids". Biochimica et Biophysica Acta 1123 (2): 117–26. PMID 1739742. 
  28. ^ Guan X, Wenk MR. (2008). "Biochemistry of inositol lipids". Frontiers in Bioscience 13: 3239–51. doi:10.2741/2923. PMID 18508430. 
  29. ^ Devlin, pp. 421–22.
  30. ^ Bach D, Wachtel E. (2003). "Phospholipid/cholesterol model membranes: formation of cholesterol crystallites.". Biochim Biophys Acta 1610: 187–97. doi:10.1016/S0005-2736(03)00017-8. 
  31. ^ Stryer et al., p. 749.
  32. ^ Bouillon R, Verstuyf A, Mathieu C, Van Cromphaut S, Masuyama R, Dehaes P, Carmeliet G. (2006). "Vitamin D resistance". Best Practice & Research. Clinical Endocrinology & Metabolism 20 (4): 627–45. doi:10.1016/j.beem.2006.09.008. PMID 17161336. 
  33. ^ Russell DW. (2003). "The enzymes, regulation, and genetics of bile acid synthesis.". Annual Review of Biochemistry 72: 137–74. doi:10.1146/annurev.biochem.72.121801.161712. 
  34. ^ Villinski JC, Hayes JM, Brassell SC, Riggert VL, Dunbar RB. (2008). "Sedimentary sterols as biogeochemical indicators in the Southern Ocean". Organic Geochemistry 39 (5): 567–88. doi:10.1016/j.orggeochem.2008.01.009. 
  35. ^ Deacon J. (2005). Fungal Biology. Cambridge, MA: Blackwell Publishers. hlm. 342. ISBN 1-4051-3066-0. 
  36. ^ Kuzuyama T, Seto H. (2003). "Diversity of the biosynthesis of the isoprene units.". Natural Product Reports 20: 171–83. doi:10.1039/b109860h. 
  37. ^ Rao AV, Rao LG. (2007). "Carotenoids and human health". Pharmacological Research : the Official Journal of the Italian Pharmacological Society 55 (3): 207–16. doi:10.1016/j.phrs.2007.01.012. PMID 17349800. 
  38. ^ Brunmark A, Cadenas E. (1989). "Redox and addition chemistry of quinoid compounds and its biological implications". Free Radical Biology & Medicine 7 (4): 435–77. doi:10.1016/0891-5849(89)90126-3. PMID 2691341. 
  39. ^ Swiezewska E, Danikiewicz W. (2005). "Polyisoprenoids: structure, biosynthesis and function". Progress in Lipid Research 44 (4): 235–58. doi:10.1016/j.plipres.2005.05.002. PMID 16019076. 
  40. ^ a b Raetz CR, Garrett TA, Reynolds CM, Shaw WA, Moore JD, Smith DC Jr, Ribeiro AA, Murphy RC,Ulevitch RJ, Fearns C, Reichart D, Glass CK, Benner C, Subramaniam S, Harkewicz R, Bowers-Gentry RC, Buczynski MW, Cooper JA, Deems RA, Dennis EA. (2006). "Kdo2-Lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4". Journal of Lipid Research 47: 1097–111. doi:10.1194/jlr.M600027-JLR200. PMID 16479018. 
  41. ^ (Inggris)"Glucolipid". Farlex free dictionary. Diakses 2010-02-23. 
  42. ^ (Inggris)"Gloculipid". Dictionary.com. Diakses 2010-02-23. 
  43. ^ (Inggris)"Polyketide". Farlex free dictionary. Diakses 2010-02-22. 
  44. ^ Walsh CT. (2004). "Polyketide and nonribosomal peptide antibiotics: modularity and versatility". Science 303: 1805–10. doi:10.1126/science.1094318. PMID 15031493. 
  45. ^ Caffrey P, Aparicio JF, Malpartida F, Zotchev SB (2008). "Biosynthetic engineering of polyene macrolides towards generation of improved antifungal and antiparasitic agents". Current Topics in Medicinal Chemistry 8 (8): 639–53. doi:10.2174/156802608784221479. PMID 18473889. Diakses 2009-04-12. 
  46. ^ (Inggris)"Polyketide synthase complexes: their structure and function in antibiotic biosynthesis". Organisch-Chemisches Institut, Universität Zürich, Switzerland - Robinson JA. Diakses 2010-02-22. 
  47. ^ (Inggris)"Polyketide". Merriam-Webster's Online Dictionary. Diakses 2010-02-22. 
  48. ^ Minto RE, Blacklock BJ. (2008). "Biosynthesis and function of polyacetylenes and allied natural products". Progress in Lipid Research 47 (4): 233–306. doi:10.1016/j.plipres.2008.02.002. PMID 18387369. Diakses 2009-04-12. 
  49. ^ (Inggris)"Soap". Elmhurst College, Charles E. Ophardt. Diakses 2010-02-22. 
  50. ^ (Inggris)"Wax". Elmhurst College, Charles E. Ophardt. Diakses 2010-02-22. 

Kepustakaan[sunting | sunting sumber]

  • Bhagavan NV. (2002). Medical Biochemistry. San Diego: Harcourt/Academic Press. ISBN 0-12-095440-0. 
  • Devlin TM. (1997). Textbook of Biochemistry: With Clinical Correlations (ed. 4th). Chichester: John Wiley & Sons. ISBN 0-471-17053-4. 
  • Stryer L, Berg JM, Tymoczko JL. (2007). Biochemistry (ed. 6th). San Francisco: W.H. Freeman. ISBN 0-7167-8724-5. 
  • Van Holde KE, Mathews CK. (1996). Biochemistry (ed. 2nd). Menlo Park, Calif: Benjamin/Cummings Pub. Co. ISBN 0-8053-3931-0. 

Pranala luar[sunting | sunting sumber]

Pengantar[sunting | sunting sumber]

Pengelompokan[sunting | sunting sumber]

  • LIPID MAPS - Strategi Lintasan dan Metabolit LIPID

Nomenklatur[sunting | sunting sumber]

Basis data[sunting | sunting sumber]

  • LIPID MAPS - Basis data komprehensif tentang lipid dan gen/protein yang berasosiasi dengan lipid.
  • LipidBank - Basis data Jepang tentang lipid dan sifat-sifat yang terkait, data spektral, dan referensi.
  • LIPIDAT - Basis data yang melibatkan fosfolipid dan data termodinamika yang terkait.

Umum[sunting | sunting sumber]

  • ApolloLipids - Menyediakan informasi pencegahan dan perawatan penyakit kardiovaskular dan dislipidemia, juga program pendidikan kedokteran yang sinambung.
  • National Lipid Association - Organisasi pendidikan kedokteran profesional bagi tenaga perawatan kesehatan yang mencari cara untuk mencegah ketaksehatan dan kematian akibat dislipidemia dan kelainan yang terkait-kolesterol.