Persamaan kubik

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Loncat ke navigasi Loncat ke pencarian
Grafik fungsi kubik dengan 3 akar nyata (di mana kurva memotong sumbu horizontal pada y = 0). Kasing yang ditunjukkan memiliki dua titik kritis. Di sini fungsinya adalah f(x) = (x3 + 3x2 − 6x − 8)/4.

Dalam Aljabar, persamaan kubik dalam satu variabel adalah persamaan bentuk

di mana adalah nol.

Solusi dari persamaan ini disebut akar fungsi dari fungsi kubik yang didefinisikan oleh sisi kiri persamaan. Jika semua koefisien , , , dan dari persamaan kubik adalah bilangan riil, maka ia memiliki setidaknya satu akar nyata (ini berlaku untuk semua fungsi polinomial derajat ganjil). Semua akar persamaan kubik dapat ditemukan dengan cara berikut:

Koefisien tidak perlu bilangan riil. Banyak dari apa yang dibahas di bawah ini berlaku untuk koefisien dalam medan apa pun dengan karakteristik selain 2 dan 3. Solusi dari persamaan kubik tidak harus milik bidang yang sama dengan koefisien. Sebagai contoh, beberapa persamaan kubik dengan koefisien rasional memiliki akar yang bilangan kompleks irasional (dan bahkan tidak nyata).