Mekanika fluida

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Efek Bernoulli dalam mekanika fluida

Mekanika Fluida adalah cabang dari ilmu fisika yang mempelajari mengenai zat fluida (cair, gas dan plasma) dan gaya yang bekerja padanya. Mekanika fluida dapat dibagi menjadi statika fluida, ilmu yang mempelajari keadaan fluida saat diam; kinematika fluida, ilmu yang mempelajari fluida yang bergerak; dan dinamika fluida, ilmu yang mempelajari efek gaya pada fluida yang bergerak. Ini adalah cabang dari mekanika kontinum, sebuah subjek yang memodelkan materi tanpa memperhatikan informasi mengenai atom penyusun dari materi tersebut sehingga hal ini lebih berdasarkan pada sudut pandang makroskopik daripada sudut pandang mikroskopik. Mekanika fluida, terutama dinamika fluida, adalah bidang penelitian utama dengan banyak hal yang belum terselesaikan atau hanya sebagian yang terselesaikan. Mekanika fluida dapat menjadi sangat rumit secara matematika, dan sangat tepat untuk diselesaikan dengan metode numerik, biasanya dengan menggunakan perhitungan komputer. Dinamika Fluida Komputasi, adalah salah satu disiplin yang dikhususkan untuk penyelesaian masalah mekanika fluida dengan pendekatan numerik.

Hubungan dengan mekanika kontinum[sunting | sunting sumber]

Mekanika fluida adalah subdisiplin dari mekanika kontinum, seperti yang diilustrasikan pada tabel berikut.

Mekanika kontinum: studi fisika dari material kontinu Mekanika solid: studi fisika dari material kontinu dengan bentuk tertentu. Elastisitas: menjelaskan material yang kembali ke bentuk awal setelah diberi tegangan.
Plastisitas: menjelaskan material yang secara permanen terdeformasi setelah diberi tegangan dengan besar tertentu. Reologi: studi material yang memiliki karakteristik solid dan fluida.
Mekanika fluida: studi fisika dari material kontinu yang bentuknya mengikuti bentuk wadahnya. Fluida non-Newtonian
Fluida Newtonian

Dalam pandangan secara mekanis, sebuah fluida adalah suatu substansi yang tidak mampu menahan tekanan tangensial. Hal ini menyebabkan fluida pada keadaan diamnya berbentuk mengikuti bentuk wadahnya.

Asumsi Dasar[sunting | sunting sumber]

Seperti halnya model matematika pada umumnya, mekanika fluida membuat beberapa asumsi dasar berkaitan dengan studi yang dilakukan. Asumsi-asumsi ini kemudian diterjemahkan ke dalam persamaan-persamaan matematis yang harus dipenuhi bila asumsi-asumsi yang telah dibuat berlaku.

Mekanika fluida mengasumsikan bahwa semua fluida mengikuti:

Kadang, akan lebih bermanfaat (dan realistis) bila diasumsikan suatu fluida bersifat inkompresibel. Maksudnya adalah densitas dari fluida tidak berubah ketika diberi tekanan. Cairan kadang-kadang dapat dimodelkan sebagai fluida inkompresibel sementara semua gas tidak bisa.

Selain itu, kadang-kadang viskositas dari suatu fluida dapat diasumsikan bernilai nol (fluida tidak viskos). Terkadang gas juga dapat diasumsikan bersifat tidak viskos. Jika suatu fluida bersifat viskos dan alirannya ditampung dalam suatu cara (seperti dalam pipa), maka aliran pada batas sistemnya mempunyai kecepatan nol. Untuk fluida yang viskos, jika batas sistemnya tidak berpori, maka gaya geser antara fluida dengan batas sistem akan memberikan resultan kecepatan nol pada batas fluida.

Hipotesis kontinum[sunting | sunting sumber]

Fluida disusun oleh molekul-molekul yang bertabrakan satu sama lain. Namun, asumsi kontinum menganggap fluida bersifat kontinu. Dengan kata lain, properti seperti densitas, tekanan, temperatur, dan kecepatan dianggap terdefinisi pada titik-titik yang sangat kecil yang mendefinisikan REV (‘’Reference Element of Volume’’) pada orde geometris jarak antara molekul-molekul yang berlawanan di fluida. Properti tiap titik diasumsikan berbeda dan dirata-ratakan dalam REV. Dengan cara ini, kenyataan bahwa fluida terdiri dari molekul diskrit diabaikan.

Hipotesis kontinum pada dasarnya hanyalah pendekatan. Sebagai akibatnya, asumsi hipotesis kontinum dapat memberikan hasil dengan tingkat akurasi yang tidak diinginkan. Namun, bila kondisi benar, hipotesis kontinum menghasilkan hasil yang sangat akurat.

Masalah akurasi ini biasa dipecahkan menggunakan mekanika statistik. Untuk menentukan perlu menggunakan dinamika fluida konvensial atau mekanika statistik, angka Knudsen permasalahan harus dievaluasi. Angka Knudsen didefinisikan sebagai rasio dari rata-rata panjang jalur bebas molekular terhadap suatu skala panjang fisik representatif tertentu. Skala panjang ini dapat berupa radius suatu benda dalam suatu fluida. Secara sederhana, angka Knudsen adalah berapa kali panjang diameter suatu partikel akan bergerak sebelum menabrak partikel lain.

Persamaan Navier-Stokes[sunting | sunting sumber]

Persamaan Navier-Stokes (dinamakan dari Claude-Louis Navier dan George Gabriel Stokes) adalah serangkaian persamaan yang menjelaskan pergerakan dari suatu fluida seperti cairan dan gas. Persamaan-persamaan ini menyatakan bahwa perubahan dalam momentum (percepatan) partikel-partikel fluida bergantung hanya kepada gaya viskos internal (mirip dengan gaya friksi) dan gaya viskos tekanan eksternal yang bekerja pada fluida. Oleh karena itu, persamaan Navier-Stokes menjelaskan kesetimbangan gaya-gaya yang bekerja pada fluida.

Persamaan Navier-Stokes memiliki bentuk persamaan diferensial yang menerangkan pergerakan dari suatu fluida. Persaman seperti ini menggambarkan hubungan laju perubahan suatu variabel terhadap variabel lain. Sebagai contoh, persamaan Navier-Stokes untuk suatu fluida ideal dengan viskositas bernilai nol akan menghasilkan hubungan yang proposional antara percepatan (laju perubahan kecepatan) dan derivatif tekanan internal.

Untuk mendapatkan hasil dari suatu permasalahan fisika menggunakan persamaan Navier-Stokes, perlu digunakan ilmu kalkulus. Secara praktis, hanya kasus-kasus aliran sederhana yang dapat dipecahkan dengan cara ini. Kasus-kasus ini biasanya melibatkan aliran non-turbulen dan tunak (aliran yang tidak berubah terhadap waktu) yang memiliki nilai bilangan Reynold kecil.

Untuk kasus-kasus yang kompleks, seperti sistem udara global seperti El Niño atau daya angkat udara pada sayap, penyelesaian persamaan Navier-Stokes hingga saat ini hanya mampu diperoleh dengan bantuan komputer. Kasus-kasus mekanika fluida yang membutuhkan penyelesaian berbantuan komputer dipelajari dalam bidang ilmu tersendiri yaitu mekanika fluida komputasional


Bentuk umum persamaan[sunting | sunting sumber]

Bentuk umum persamaan Navier-Stokes untuk kekekalan momentum adalah :

\rho\frac{D\mathbf{v}}{D t} = \nabla \cdot\mathbb{P} + \rho\mathbf{f}

di mana

  • \rho adalah densitas fluida,
\frac{D}{D t} adalah derivatif substantif (dikenal juga dengan istilah derivatif dari material)
  • \mathbf{v} adalah vektor kecepatan,
  • f adalah vektor gaya benda, dan
  • \mathbb{P} adalah tensor yang menyatakan gaya-gaya permukaan yang bekerja pada partikel fluida.

\mathbb{P} adalah tensor yang simetris kecuali bila fluida tersusun dari derajat kebebasan yang berputar seperti vorteks. Secara umum, (dalam tiga dimensi) \mathbb{P} memiliki bentuk persamaan:

\mathbb{P} = \begin{pmatrix}
\sigma_{xx} &  \tau_{xy} & \tau_{xz} \\
\tau_{yx} &  \sigma_{yy} & \tau_{yz} \\
\tau_{zx} &  \tau_{zy} & \sigma_{zz}
\end{pmatrix}

di mana

  • \sigma adalah tegangan normal, dan
  • \tau adalah tegangan tangensial (tegangan geser).

Persamaan di atas sebenarnya merupakan sekumpulan tiga persamaan, satu persamaan untuk tiap dimensi. Dengan persamaan ini saja, masih belum memadai untuk menghasilkan hasil penyelesaian masalah. Persamaan yang dapat diselesaikan diperoleh dengan menambahkan persamaan kekekalan massa dan batas-batas kondisi ke dalam persamaan di atas.

Fluida Newtonian vs. non-Newtonian[sunting | sunting sumber]

Sebuah Fluida Newtonian (dinamakan dari Isaac Newton) didefinisikan sebagai fluida yang tegangan gesernya berbanding lurus secara linier dengan gradien kecepatan pada arah tegak lurus dengan bidang geser. Definisi ini memiliki arti bahwa fluida newtonian akan mengalir terus tanpa dipengaruhi gaya-gaya yang bekerja pada fluida. Sebagai contoh, air adalah fluida Newtonian karena air memiliki properti fluida sekalipun pada keadaan diaduk.

Sebaliknya, bila fluida non-Newtonian diaduk, akan tersisa suatu "lubang". Lubang ini akan terisi seiring dengan berjalannya waktu. Sifat seperti ini dapat teramati pada material-material seperti puding. Peristiwa lain yang terjadi saat fluida non-Newtonian diaduk adalah penurunan viskositas yang menyebabkan fluida tampak "lebih tipis" (dapat dilihat pada cat). Ada banyak tipe fluida non-Newtonian yang kesemuanya memiliki properti tertentu yang berubah pada keadaan tertentu.

Persamaan pada fluida Newtonian[sunting | sunting sumber]

Konstanta yang menghubungkan tegangan geser dan gradien kecepatan secara linier dikenal dengan istilah viskositas. Persamaan yang menggambarkan perlakuan fluida Newtonian adalah:

\tau=\mu\frac{dv}{dx}

di mana

\tau adalah tegangan geser yang dihasilkan oleh fluida
\mu adalah viskositas fluida-sebuah konstanta proporsionalitas
\frac{dv}{dx} adalah gradien kecepatan yang tegak lurus dengan arah geseran

Viskositas pada fluida Newtonian secara definisi hanya bergantung pada temperatur dan tekanan dan tidak bergantung pada gaya-gaya yang bekerja pada fluida. Jika fluida bersifat inkompresibel dan viskositas bernilai tetap di seluruh bagian fluida, persamaan yang menggambarkan tegangan geser (dalam koordinat kartesian) adalah

\tau_{ij}=\mu\left(\frac{\partial v_i}{\partial x_j}+\frac{\partial v_j}{\partial x_i} \right)

di mana

\tau_{ij} adalah tegangan geser pada bidang i^{th} dengan arah j^{th}
v_i adalah kecepatan pada arah i^{th}
x_j adalah koordinat berarah j^{th}

Jika suatu fluida tidak memenuhi hubungan ini, fluida ini disebut fluida non-Newtonian.

Sumber[sunting | sunting sumber]

Bacaan lebih lanjut[sunting | sunting sumber]

  • Kanginan, Marthen (2006). Fisika 2 untuk SMA Kelas XI. Jakarta: Erlangga. ISBN 978-979-781-731-2.  (Indonesia)