Aljabar linear

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari

Aljabar linear adalah bidang studi matematika yang mempelajari sistem persamaan linear dan solusinya, vektor, serta transformasi linear. Matriks dan operasinya juga merupakan hal yang berkaitan erat dengan bidang aljabar linear.

Persamaan Linear dengan Matriks[sunting | sunting sumber]

Persamaan linear dapat dinyatakan sebagai matriks. Misalnya persamaan:

3x1 + 4x2 − 2x3 = 5
x1 − 5x2 + 2x3 = 7
2x1 + x2 − 3x3 = 9

dapat dinyatakan dalam matriks teraugmentasi sebagai berikut

\begin{bmatrix}
3 & 4 & -2 & 5\\
1 & -5 & 2 & 7\\
2 & 1 & -3 & 9\\
\end{bmatrix}

Penyelesaian persamaan linier dalam bentuk matriks dapat dilakukan melalui beberapa cara, yaitu dengan eliminasi Gauss atau dapat juga dengan cara eliminasi Gauss-Jordan. Namun, suatu sistem persamaan linier dapat diselesaikan dengan eliminasi Gauss untuk mengubah bentuk matriks teraugmentasi ke dalam bentuk eselon-baris tanpa menyederhanakannya. Cara ini disebut dengan substitusi balik.

Sebuah sisitem persamaan linier dapat dikatakan homogen apabila mempunyai bentuk :

a11x1 + a12x2 + ... + a1nxn = 0
a21x1 + a22x2 + ... + a2nxn = 0
am1x1 + am2x2 + ... + amnxn = 0

Setiap sistem persamaan linier yang homogen bersifat adalah tetap apabila semua sistem mepunyai x1 = 0 , x2 = 0 , ... , xn = 0 sebagai penyelesaian. Penyelesaian ini disebut solusi trivial. Apabila mempunyai penyelesaian yang lain maka disebut solusi nontrivial.

Penyelesaian Persamaan Linear dengan Matriks[sunting | sunting sumber]

Bentuk Eselon-baris[sunting | sunting sumber]

Matriks dapat dikatakan Eselon-baris apabila memenuhi persyaratan berikut :

  • Di setiap baris, angka pertama selain 0 harus 1 (leading 1).
  • Jika ada baris yang semua elemennya nol, maka harus dikelompokkan di baris akhir dari matriks.
  • Jika ada baris yang leading 1 maka leading 1 di bawahnya, angka 1-nya harus berada lebih kanan dari leading 1 di atasnya.
  • Jika kolom yang memiliki leading 1 angka selain 1 adalah nol maka matriks tersebut disebut Eselon-baris tereduksi

Contoh:

  • syarat 1: baris pertama disebut dengan leading 1
\begin{bmatrix}
1 & 4 & -2 & 5\\
0 & -5 & 2 & 7\\
0 & 0 & -3 & 9\\
0 & 0 & -8 & 8\\
\end{bmatrix}
  • syarat 2: baris ke-3 dan ke-4 memenuhi syarat 2
\begin{bmatrix}
1 & 4 & -2 & 5\\
0 & -5 & 2 & 7\\
0 & 0 & -3 & 9\\
0 & 0 & 0 & 0\\
\end{bmatrix}
  • syarat 3: baris pertama dan ke-2 memenuhi syarat 3
\begin{bmatrix}
1 & 4 & -2 & 5\\
0 & 1 & 2 & 7\\
0 & 0 & -3 & 9\\
0 & 0 & 0 & 0\\
\end{bmatrix}
  • syarat 4: matriks dibawah ini memenuhi syarat ke 4 dan disebut Eselon-baris tereduksi
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0\\
0 & 1 & 2 & 5\\
0 & 0 & 3 & 0\\
0 & 0 & 0 & 6\\
\end{bmatrix}

Operasi Eliminasi Gauss[sunting | sunting sumber]

Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah dengan melakukan operasi baris sehingga matriks tersebut menjadi matriks yang Eselon-baris. Ini dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris, lakukan substitusi balik untuk mendapatkan nilai dari variabel-variabel tersebut.

Contoh: Diketahui persamaan linear

x + 2y + z  = 6
x + 3y + 2z = 9
2x + y + 2z = 12

Tentukan Nilai x, y dan z

Jawab: Bentuk persamaan tersebut ke dalam matriks:

\begin{bmatrix}
1 & 2 & 1 & 6\\
1 & 3 & 2 & 9\\
2 & 1 & 2 & 12\\
\end{bmatrix}

Operasikan Matriks tersebut

\begin{bmatrix}
1 & 2 & 1 & 6\\
1 & 3 & 2 & 9\\
2 & 1 & 2 & 12\\
\end{bmatrix} B1 x 1 , Untuk mengubah a11 menjadi 1

\begin{bmatrix}
1 & 2 & 1 & 6\\
0 & 1 & 1 & 3\\
2 & 1 & 2 & 12\\
\end{bmatrix} B2 - 1.B1 , Untuk mengubah a21 menjadi 0

\begin{bmatrix}
1 & 2 & 1 & 6\\
0 & 1 & 1 & 3\\
0 & -3 & 0 & 0\\
\end{bmatrix} B3 - 2.B1 , Untuk mengubah a31 menjadi 0

\begin{bmatrix}
1 & 2 & 1 & 6\\
0 & 1 & 1 & 3\\
0 & -3 & 0 & 0\\
\end{bmatrix} B2 x 1 , Untuk mengubah a22 menjadi 1

\begin{bmatrix}
1 & 2 & 1 & 6\\
0 & 1 & 1 & 3\\
0 & 0 & 3 & 9\\
\end{bmatrix} B3 + 3.B2 , Untuk mengubah a32 menjadi 0

\begin{bmatrix}
1 & 2 & 1 & 6\\
0 & 1 & 1 & 3\\
0 & 0 & 1 & 3\\
\end{bmatrix} B3 x 1/3 , Untuk mengubah a33 menjadi 1 (Matriks menjadi Eselon-baris)

Maka mendapatkan 3 persamaan linier baru yaitu

x + 2y + z = 6
y + z      = 3
z          = 3

Kemudian lakukan substitusi balik maka didapatkan:

y + z = 3
y + 3 = 3
y = 0
x + 2y + z =6
x + 0 + 3 = 6
x = 3

Jadi nilai dari x = 3 , y = 0 ,dan z = 3

Operasi Eliminasi Gauss-Jordan[sunting | sunting sumber]

Eliminasi Gauss-Jordan adalah pengembangan dari eliminasi Gauss yang hasilnya lebih sederhana. Caranya adalah dengan meneruskan operasi baris dari eliminasi Gauss sehingga menghasilkan matriks yang Eselon-baris tereduksi. Ini juga dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris tereduksi, maka langsung dapat ditentukan nilai dari variabel-variabelnya tanpa substitusi balik.

Contoh: Diketahui persamaan linear

x + 2y + 3z = 3
2x + 3y + 2z = 3
2x + y + 2z = 5

Tentukan Nilai x, y dan z

Jawab: Bentuk persamaan tersebut ke dalam matriks:

\begin{bmatrix}
1 & 2 & 3 & 3\\
2 & 3 & 2 & 3\\
2 & 1 & 2 & 5\\
\end{bmatrix}

Operasikan Matriks tersebut

\begin{bmatrix}
1 & 2 & 3 & 3\\
0 & -1 & -4 & -3\\
2 & 1 & 2 & 5\\
\end{bmatrix} B2-2.B1

\begin{bmatrix}
1 & 2 & 3 & 3\\
0 & -1 & -4 & -3\\
0 & -3 & -4 & -1\\
\end{bmatrix} B3-2.B1

\begin{bmatrix}
1 & 2 & 3 & 3\\
0 & -1 & -4 & -3\\
0 & 0 & 8 & 8\\
\end{bmatrix} B3-3.B2

\begin{bmatrix}
1 & 2 & 3 & 3\\
0 & 1 & 4 & 3\\
0 & 0 & 1 & 1\\
\end{bmatrix} B3/8 dan B2/-1

\begin{bmatrix}
1 & 2 & 3 & 3\\
0 & 1 & 0 & -1\\
0 & 0 & 1 & 1\\
\end{bmatrix} B2-4.B3

\begin{bmatrix}
1 & 2 & 0 & 0\\
0 & 1 & 0 & -1\\
0 & 0 & 1 & 1\\
\end{bmatrix} B1-3.B3

\begin{bmatrix}
1 & 0 & 0 & 2\\
0 & 1 & 0 & -1\\
0 & 0 & 1 & 1\\
\end{bmatrix} B1-2.B2 (Matriks menjadi Eselon-baris tereduksi)

Maka didapatkan nilai dari x = 2 , y = -1 ,dan z = 1

Operasi Dalam Matriks[sunting | sunting sumber]

Dua buah matriks dikatakan sama apabila matriks-matriks tersebut mempunyai ordo yang sama dan setiap elemen yang seletak sama.

Jika A dan B adalah matriks yang mempunyai ordo sama, maka penjumlahan dari A + B adalah matriks hasil dari penjumlahan elemen A dan B yang seletak. Begitu pula dengan hasil selisihnya. Matriks yang mempunyai ordo berbeda tidak dapat dijumlahkan atau dikurangkan.

Jumlah dari k buah matriks A adalah suatu matriks yang berordo sama dengan A dan besar tiap elemennya adalah k kali elemen A yang seletak. Didefinisikan: Jika k sebarang skalar maka kA = A k adalah matriks yang diperoleh dari A dengan cara mengalikan setiap elemennya dengan k. Negatif dari A atau -A adalah matriks yang diperoleh dari A dengan cara mengalikan semua elemennya dengan -1. Untuk setiap A berlaku A + (-A) = 0. Hukum yang berlaku dalam penjumlahan dan pengurangan matriks :

a.) A + B = B + A
b.) A + ( B + C ) = ( A + B ) + C
c.) k ( A + B ) = kA + kB = ( A + B ) k , k = skalar

Hasil kali matriks A yang ber-ordo m x p dengan matriks B yang berordo p x n dapat dituliskan sebagi matriks C = [ cij ] berordo m x n dimana cij = ai1 b1j + ai2 b2j + ... + aip bpj

Matriks Diagonal, Segitiga, dan Matriks Simetris[sunting | sunting sumber]

Matriks Diagonal[sunting | sunting sumber]

Sebuah matriks bujursangkar yang unsur-unsurnya berada di garis diagonal utama dari matriks bukan nol dan unsur lainnya adalah nol disebut dengan matriks diagonal. Contoh :

\begin{bmatrix}
1 & 0\\
0 & -5\\
\end{bmatrix}

\begin{bmatrix}
1 & 0 & 0\\
0 & -5 & 0\\
0 & 0 & 1\\
\end{bmatrix}

\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}

secara umum matriks n x n bisa ditulis sebagai

\begin{bmatrix}
d_1 & 0 & \cdots & 0\\
0 & d_2 & \cdots & 0\\
\vdots & \vdots &  & \vdots\\
0 & 0 & \cdots & d_n\\
\end{bmatrix}

Matriks diagonal dapat dibalik dengan menggunakan rumus berikut : D^{-1}=\begin{bmatrix}
1/d_1 & 0 & \cdots & 0\\
0 & 1/d_2 & \cdots & 0\\
\vdots & \vdots &  & \vdots\\
0 & 0 & \cdots & 1/d_n\\
\end{bmatrix}

DD^{-1}=D^{-1}D=I

jika D adalah matriks diagonal dan k adalah angka yang positif maka

D^{k}=\begin{bmatrix}
d_1^k & 0 & \cdots & 0\\
0 & d_2^k & \cdots & 0\\
\vdots & \vdots &  & \vdots\\
0 & 0 & \cdots & d_n^k\\
\end{bmatrix}

Contoh : A=\begin{bmatrix}
1 & 0 & 0\\
0 & -3 & 0\\
0 & 0 & 2\\
\end{bmatrix}

maka A^5=\begin{bmatrix}
1 & 0 & 0\\
0 & -243 & 0\\
0 & 0 & 32\\
\end{bmatrix}

Matriks Segitiga[sunting | sunting sumber]

Matriks segitiga adalah matriks persegi yang di bawah atau di atas garis diagonal utama nol. Matriks segitiga bawah adalah matriks persegi yang di bawah garis diagonal utama nol. Matriks segitiga atas adalah matriks persegi yang di atas garis diagonal utama nol.

Matriks segitiga

\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14}\\
0 & a_{22} & a_{23} & a_{24}\\
0 & 0 & a_{33} & a_{34}\\
0 & 0 & 0 & a_{44}\\
\end{bmatrix}

Matriks segitiga bawah

\begin{bmatrix}
a_{11} & 0 & 0 & 0\\
a_{21} & a_{22} & 0 & 0\\
a_{31} & a_{32} & a_{33} & 0\\
a_{41} & a_{42} & a_{43} & a_{44}\\
\end{bmatrix}

Teorema

  • Transpos pada matriks segitiga bawah adalah matriks segitiga atas, dan transpose pada matriks segitiga atas adalah segitiga bawah.
  • Produk pada matriks segitiga bawah adalah matriks segitiga bawah, dan produk pada matriks segitiga atas adalah matriks segitiga atas.
  • Matriks segitiga bisa di-inverse jika hanya jika diagonalnya tidak ada yang nol.
  • Inverse pada matriks segitiga bawah adalah matriks segitiga bawah, dan inverse pada matriks segitiga atas adalah matriks segitiga atas.

Contoh :

Matriks segitiga yang bisa di invers A =\begin{bmatrix}
1 & 3 & -1\\
0 & 2 & 4\\
0 & 0 & 5\\
\end{bmatrix}

Inversnya adalah A^{-1}=\begin{bmatrix}
1 & -3/2 & 7/5\\
0 & 1/2 & -2/5\\
0 & 0 & 1/5\\
\end{bmatrix}

Matriks yang tidak bisa di invers

B =\begin{bmatrix}
3 & -2 & 2\\
0 & 0 & -1\\
0 & 0 & 1\\
\end{bmatrix}

Matriks Simetris[sunting | sunting sumber]

Matriks kotak A disebut simetris jika A = A^T

Contoh matriks simetris \begin{bmatrix}
7 & -3 \\
-3 & 5 \\
\end{bmatrix}

\begin{bmatrix}
1 & 4 & 5\\
4 & -3 & 0\\
5 & 0 & 7\\
\end{bmatrix}

Teorema

  • Jika A dan B adalah matriks simetris dengan ukuran yang sama, dan jika k adalah skalar maka

A^T adalah simetris A + B dan A - B adalah simetris kA adalah simetris (AB)^T = B^T A^T = BA

Jika A adalah matriks simetris yang bisa di invers, maka A^{-1} adalah matriks simetris.

Asumsikan bahwa A adalah matriks simetris dan bisa di inverse, bahwa A = A^T maka :

(A^{-1})^T = (A^T)^{-1} = A^{-1}

Yang mana membuktikan bahwa A^{-1} adalah simetris.

Produk AA^T dan A^TA

 (AA^T)^T =  (A^T)^TA^T = AA^T dan (A^TA)^T = A^T(A^T)^T = A^TA

Contoh

A adalah matriks 2 X 3 A = \begin{bmatrix}
1 & -2 & 4\\
3 & 0 & -5\\
\end{bmatrix}

lalu  A^TA = \begin{bmatrix}
1 & 3 \\
-2 & 0\\
4 & -5 \\
\end{bmatrix}\begin{bmatrix}
1 & -2 & 4\\
3 & 0 & -5\\
\end{bmatrix} = \begin{bmatrix}
10 & -2 & 11\\
-2 & 4 & -8\\
-11 & -8 & 41\\
\end{bmatrix}

AA^T = \begin{bmatrix}
1 & -2 & 4\\
3 & 0 & -5\\
\end{bmatrix}\begin{bmatrix}
1 & 3 \\
-2 & 0\\
4 & -5 \\
\end{bmatrix} = \begin{bmatrix}
21 & -17 \\
-17 & 34\\
\end{bmatrix}

Jika A adalah Matriks yang bisa di inverse, maka AA^T dan A^TA juga bisa di inverse

Transpos Matriks[sunting | sunting sumber]

Yang dimaksud dengan Transpos dari suatu matriks adalah mengubah komponen-komponen dalam matriks, dari yang baris menjadi kolom, dan yang kolom di ubah menjadi baris.

Contoh: Matriks

A = \begin{bmatrix}
2 & -5 & 1\\
-1 & 3 & 3\\
5 & 4 & 8\\
\end{bmatrix} ditranspose menjadi AT = \begin{bmatrix}
2 & -1 & 5\\
-5 & 3 & 4\\
1 & 3 & 8\\
\end{bmatrix}

Matriks

B = \begin{bmatrix}
1 & 3 & 5 & 7\\
9 & 5 & 7 & 4\\
4 & 1 & 5 & 3\\
\end{bmatrix} ditranspose menjadi BT = \begin{bmatrix}
1 & 9 & 4\\
3 & 5 & 1\\
5 & 7 & 5\\
7 & 4 & 3\\
\end{bmatrix}

Rumus-rumus operasi Transpose sebagai berikut:

1. ((A)^T)^T = A
2. (A+B)^T = A^T + B^T dan (A-B)^T = A^T - B^T
3. (kA)^T = kA^T dimana k adalah skalar
4. (AB)^T = B^T A^T

Determinan[sunting | sunting sumber]

Orde 2x2[sunting | sunting sumber]

Determinan adalah suatu fungsi tertentu yang menghubungkan suatu bilangan real dengan suatu matriks bujursangkar.

Sebagai contoh, kita ambil matriks A2x2

A = \begin{bmatrix}     
a & b\\
c & d\\
\end{bmatrix} tentukan determinan A

untuk mencari determinan matrik A maka,

detA = ad - bc

Contoh Soal:

A = \begin{bmatrix}
1 & 2\\
4 & 5\\
\end{bmatrix} tentukan determinan A

Jawab:

det(A) = \begin{bmatrix}
1 & 2\\
4 & 5\\
\end{bmatrix} = 1x5 - 4x2 = -3

Orde 3x3[sunting | sunting sumber]

Determinan dengan Ekspansi Kofaktor[sunting | sunting sumber]

Terbagi tiga jenis yaitu:

  • Dengan Minor dan Kofaktor
  • Dengan Ekspansi Kofaktor Pada Baris Pertama
  • Dengan Ekspansi Kofaktor Pada Kolom Pertama
Determinan dengan Minor dan kofaktor[sunting | sunting sumber]
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
 a_{31} & a_{32} & a_{33}\\
\end{bmatrix} tentukan determinan A

Pertama buat minor dari a11

M11 = \begin{bmatrix}
a_{22} & a_{23}\\
a_{32} & a_{33}\\
\end{bmatrix} = detM = a22a33 - a23a32

Kemudian kofaktor dari a11 adalah

c11 = (-1)1+1M11 = (-1)1+1a22a33 - a23a32

kofaktor dan minor hanya berbeda tanda Cij=±Mij untuk membedakan apakah kofaktor pada ij adalah + atau - maka kita bisa melihat matrik dibawah ini

\begin{bmatrix}
+&-&+&-&+&\cdots\\
-&+&-&+&-&\cdots\\
+&-&+&-&+&\cdots\\
-&+&-&+&-&\cdots\\
\vdots&\vdots&\vdots&\vdots&\vdots& \\
\end{bmatrix}

Begitu juga dengan minor dari a32

M32 = \begin{bmatrix}
a_{11} & a_{13}\\
a_{21} & a_{23}\\
\end{bmatrix} = detM = a11a23 - a13a21

Maka kofaktor dari a32 adalah

c32 = (-1)3+2M32 = (-1)3+2 x a11a23 - a13a21

Secara keseluruhan, definisi determinan ordo 3x3 adalah

det(A) = a11C11+a12C12+a13C13

Contoh Soal:

A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} tentukan determinan A dengan metode Minor dan kofaktor

Jawab:

c11 = (-1)1+1\begin{bmatrix} 5 & 4\\2 & 1\\ \end{bmatrix} = 1 (-3) = -3
c12 = (-1)1+2\begin{bmatrix} 4 & 4\\3 & 1\\ \end{bmatrix} = -1 (-8) = 8
c13 = (-1)1+3\begin{bmatrix} 4 & 5\\3 & 2\\ \end{bmatrix} = 1 (-7) = -7
det(A) = 1 (-3) + 2 (8) + 3 (-7) = -8
Determinan dengan Ekspansi Kofaktor Pada Baris Pertama[sunting | sunting sumber]

Misalkan ada sebuah matriks A3x3

A = \begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{bmatrix}

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11\begin{bmatrix}a_{22} & a_{23}\\
a_{32} & a_{33}\\
\end{bmatrix} - a12\begin{bmatrix}a_{21} & a_{23}\\
a_{31} & a_{33}\\
\end{bmatrix} + a13\begin{bmatrix}a_{21} & a_{22}\\
a_{31} & a_{32}\\
\end{bmatrix}
= a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 - a22a31)
= a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a12a21a33 - a11a23a32

Contoh Soal:

A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} tentukan determinan A dengan metode ekspansi kofaktor baris pertama

Jawab:

det(A) = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} = 1\begin{bmatrix} 5 & 4\\2 & 1\\ \end{bmatrix} - 2\begin{bmatrix} 4 & 4\\ 3 & 1\\ \end{bmatrix} + 3\begin{bmatrix} 4 & 5\\3 & 2\\ \end{bmatrix} = 1(-3) - 2(-8) + 3(-7) = -8
Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama[sunting | sunting sumber]

Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan keduanya yaitu faktor pengali. Pada ekspansi baris, kita mengalikan minor dengan komponen baris pertama. Sedangkan dengan ekspansi pada kolom pertama, kita mengalikan minor dengan kompone kolom pertama.

Misalkan ada sebuah matriks A3x3

A = \begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{bmatrix}

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11\begin{bmatrix}a_{22} & a_{23}\\
a_{32} & a_{33}\\
\end{bmatrix} - a21\begin{bmatrix}a_{21} & a_{23}\\
a_{31} & a_{33}\\
\end{bmatrix} + a31\begin{bmatrix}a_{21} & a_{22}\\
a_{31} & a_{32}\\
\end{bmatrix}
= a11(a22a33 - a23a32) - a21(a21a33 - a23a31) + a31(a21a32 - a22a31)
= a11a22a33 + a21a23a31 + a31a21a32 - a22(a31)2 - (a21)2a33 - a11a23a32

Contoh Soal:

A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} tentukan determinan A dengan metode ekspansi kofaktor kolom pertama

Jawab:

det(A) = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} = 1\begin{bmatrix} 5 & 4\\2 & 1\\ \end{bmatrix} - 4\begin{bmatrix} 2 & 3\\ 2 & 1\\ \end{bmatrix} + 3\begin{bmatrix} 2 & 3\\5 & 4\\ \end{bmatrix} = 1(-3) - 4(-4) + 3(-7) = -8

Metode Sarrus[sunting | sunting sumber]

A = \begin{bmatrix}     
a & b & c\\
d & e & f\\
g & h & i\\ 
\end{bmatrix} tentukan determinan A

untuk mencari determinan matrik A maka,

detA = (aei + bfg + cdh) - (bdi + afh + ceg)

Contoh Soal:

A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 4\\
3 & 2 & 1\\
\end{bmatrix} tentukan determinan A dengan metode sarrus

Jawab:

det(A) = \begin{bmatrix}
1 & 2 & 3 & 1 & 2\\
4 & 5 & 4 & 4 & 5\\
3 & 2 & 1 & 3 & 2\\
\end{bmatrix} = (1x5x1 + 2x4x3 + 3x4x2) - (3x5x3 + 2x4x1 + 1x4x2) = 53 - 61 = -8

Determinan Matriks Segitiga Atas (Multi Orde)[sunting | sunting sumber]

Jika A adalah matriks segitiga nxn (segitiga atas, segitiga bawah atau segitiga diagonal) maka det(A) adalah hasil kali diagonal matriks tersebut

det(A) = a_{11}a_{22}\cdots a_{nn}

Contoh

\begin{bmatrix} 2&7&-3&8&3\\ 0&-3&7&5&1\\ 0&0&6&7&6\\ 0&0&0&9&8\\ 0&0&0&0&4\\ \end{bmatrix} = (2)(-3)(6)(9)(4) = -1296

Adjoint Matriks (Orde 3x3)[sunting | sunting sumber]

Bila ada sebuah matriks A3x3

A = \begin{bmatrix} 3&2&-1\\ 1&6&3 \\ 2&4&0\\ \end{bmatrix}

Kofaktor dari matriks A adalah

C11 = -12 C12 = 6 C13 = -8
C21 = -4 C22 = 2 C23 = -8
C31 = 12 C32 = -10 C33 = 8

maka matriks yang terbentuk dari kofaktor tersebut adalah

\begin{bmatrix} -12&6&-8\\ -4&2&-8\\ 12&-10&8\\ \end{bmatrix}

untuk mencari adjoint sebuah matriks, kita cukup mengganti kolom menjadi baris dan baris menjadi kolom

adj(A) = \begin{bmatrix} -12&-4&12\\ 6&2&-10\\ -8&-8&8\\ \end{bmatrix}

Matriks Balikan (Invers)[sunting | sunting sumber]

Orde 2x2[sunting | sunting sumber]

JIka A dan B matriks bujur sangkar sedemikian rupa sehingga A B = B A = I , maka B disebut balikan atau invers dari A dan dapat dituliskan B = A^{-1} ( B sama dengan invers A ). Matriks B juga mempunyai invers yaitu A maka dapat dituliskan A = B^{-1}. Jika tidak ditemukan matriks B, maka A dikatakan matriks tunggal (singular). Jika matriks B dan C adalah invers dari A maka B = C.

Matriks A = \begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix} dapat di-invers apabila ad - bc ≠ 0

Dengan Rumus =

A^{-1} = \frac{1} {det (A)}\begin{bmatrix}
d & -b \\
-c & a \\
\end{bmatrix} = \frac{1} {ad-bc}\begin{bmatrix}
d & -b \\
-c & a \\
\end{bmatrix} = \begin{bmatrix}
\frac{d} {ad-bc} & -\frac{b} {ad-bc} \\
-\frac{c} {ad-bc} & \frac{a} {ad-bc} \\
\end{bmatrix}

Apabila A dan B adalah matriks seordo dan memiliki balikan maka AB dapat di-invers dan (AB)^{-1} = B^{-1} A^{-1}

Contoh 1: Matriks

A = \begin{bmatrix}
2 & -5 \\
-1 & 3 \\
\end{bmatrix} dan B = \begin{bmatrix}
3 & 5 \\
1 & 2 \\
\end{bmatrix}
AB = \begin{bmatrix}
2 & -5 \\
-1 & 3 \\
\end{bmatrix}\begin{bmatrix}
3 & 5 \\
1 & 2 \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix} = I (matriks identitas)
BA = \begin{bmatrix}
3 & 5 \\
1 & 2 \\
\end{bmatrix}\begin{bmatrix}
2 & -5 \\
-1 & 3 \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix} = I (matriks identitas)

Maka dapat dituliskan bahwa B = A^{-1} (B Merupakan invers dari A)

Contoh 2: Matriks

A = \begin{bmatrix}
1 & 1 \\
3 & 4 \\
\end{bmatrix} dan B = \begin{bmatrix}
2 & 5 \\
3 & 4 \\
\end{bmatrix}
AB = \begin{bmatrix}
1 & 1 \\
3 & 4 \\
\end{bmatrix}\begin{bmatrix}
2 & 5 \\
3 & 4 \\
\end{bmatrix} = \begin{bmatrix}
3 & 4 \\
6 & 8 \\
\end{bmatrix}
BA = \begin{bmatrix}
2 & 5 \\
3 & 4 \\
\end{bmatrix}\begin{bmatrix}
1 & 1 \\
3 & 4 \\
\end{bmatrix} = \begin{bmatrix}
17 & 21 \\
15 & 19 \\
\end{bmatrix}

Karena AB ≠ BA ≠ I maka matriks A dan matriks B disebut matriks tunggal.

Contoh 3: Matriks

A = \begin{bmatrix}
3 & 1 \\
5 & 2 \\
\end{bmatrix}

Tentukan Nilai dari A-1

Jawab: A^{-1} =\frac{1} {(3)(2)-(5)(1)}\begin{bmatrix}
2 & -1 \\
-5 & 3 \\
\end{bmatrix} = \frac{1} {6-5}\begin{bmatrix}
2 & -1 \\
-5 & 3 \\
\end{bmatrix} = \frac{1} {1}\begin{bmatrix}
2 & -1 \\
-5 & 3 \\
\end{bmatrix} = \begin{bmatrix}
2 & -1 \\
-5 & 3 \\
\end{bmatrix}

Contoh 4: Matriks

A = \begin{bmatrix}
1 & 2 \\
1 & 3 \\
\end{bmatrix}, B = \begin{bmatrix}
3 & 2 \\
2 & 2 \\
\end{bmatrix}, AB = \begin{bmatrix}
7 & 6 \\
9 & 8 \\
\end{bmatrix}

Dengan menggunakan rumus, maka didapatkan

A^{-1} = \begin{bmatrix}
3 & -2 \\
-1 & 1 \\
\end{bmatrix}, B^{-1} = \begin{bmatrix}
1 & -1 \\
-1 & \frac{3} {2} \\
\end{bmatrix}, (AB)^{-1} = \begin{bmatrix}
4 & -3 \\
-\frac{9} {2} & 7 \\
\end{bmatrix}

Maka

B^{-1} A^{-1}= \begin{bmatrix}
1 & -1 \\
-1 & \frac{3} {2} \\
\end{bmatrix}\begin{bmatrix}
3 & -2 \\
-1 & 1 \\
\end{bmatrix} = \begin{bmatrix}
4 & -3 \\
-\frac{9} {2} & 7 \\
\end{bmatrix}

Ini membuktikan bahwa (AB)^{-1} = B^{-1} A^{-1}

Orde 3x3[sunting | sunting sumber]

A = \begin{bmatrix}
 1 &  5 & 5\\
 -1 &  -1 &  0\\
 2 & 4 &  3\\
\end{bmatrix}

kemudian hitung kofaktor dari matrix A
C11 = 12 C12 = 6 C13 = -16

C21 = 4 C22 = 2 C23 = 16

C31 = 12 C32 = -10 C33 = 16

menjadi matrix kofaktor

\begin{bmatrix}
 12 &  6  & -16\\
 4  &  2  &  16\\
 12 & -10 &  16\\
\end{bmatrix}

cari adjoint dari matrix kofaktor tadi dengan mentranspose matrix kofaktor di atas, sehingga menjadi

adj(A) = \begin{bmatrix}
 12 &  4 &  12\\
  6 &  2 & -10\\
-16 & 16 &  16\\
\end{bmatrix}

A^{-1} = \frac{1}{det(A)}adj(A)

dengan metode Sarrus, kita dapat menghitung determinan dari matrix A

\mathit{det(A) = 64}

A^{-1} = \frac{1}{det(A)}adj(A) = \frac{1}{64} \begin{bmatrix}
 12 &  4 &  12\\
  6 &  2 & -10\\
-16 & 16 &  16\\
\end{bmatrix} = \begin{bmatrix}
 \frac{12}{64} & \frac{4}{64}  &  \frac{12}{64}\\
 \frac{6}{64}  & \frac{2}{64}  & -\frac{10}{64}\\
-\frac{16}{64} & \frac{16}{64} &  \frac{16}{64}\\
\end{bmatrix}

Penyelesaian persamaan linier dengan menggunakan matriks (Orde 3x3)[sunting | sunting sumber]

Metode Cramer[sunting | sunting sumber]

jika Ax = b adalah sebuah sistem linear n yang tidak di ketahui dan det(A)≠ 0 maka persamaan tersebut mempunyai penyelesaian yang unik

X_{1} =  \frac{det(A_{1})} {det(A)},  X_{2} = \frac{det(A_{2})} {det(A)}, ... ,  X_{n} = \frac{det(A_{n})} {det(A)}

dimana A j adalah matrik yang didapat dengan mengganti kolom j dengan matrik b

Contoh soal: Gunakan metode cramer untuk menyelesaikan persoalan di bawah ini

x1 + 2x3 = 6
-3x1 + 4x2 + 6x3 = 30
-x1 - 2x2 + 3x3 = 8

Jawab: bentuk matrik A dan b

A = \begin{bmatrix}
1 & 0 & 2\\
-3 & 4 & 6\\
-1 & -2 & 3\\
\end{bmatrix} b = \begin{bmatrix} 6\\ 30\\ 8\\ \end{bmatrix}

kemudian ganti kolom j dengan matrik b

A1 = \begin{bmatrix} 6 & 0 & 2\\ 30 & 4 & 6\\ 8 & -2 & 3\\ \end{bmatrix} A2 = \begin{bmatrix} 1 & 6 & 2\\ -3 & 30 & 6\\ -1 & 8 & 3\\ \end{bmatrix} A3 = \begin{bmatrix} 1 & 0 & 6\\ -3 & 4 & 30\\ -1 & -2 & 8\\ \end{bmatrix}

dengan metode sarrus kita dapat dengan mudah mencari determinan dari matrik-matrik di atas

maka,

 x_{1} = \frac{det(A_{1})} {det(A)} = \frac{-40} {44} = \frac{-10} {11}
 x_{2} = \frac{det(A_{2})} {det(A)} = \frac{72} {44} = \frac{18} {11}
 x_{3} = \frac{det(A_{3})} {det(A)} = \frac{152} {44} = \frac{38} {11}


R=Er...E2 E1 A

dan,

det(R)=det(Er)...det(E2)det(E1)det(EA)

Jika A dapat di-invers, maka sesuai dengan teorema equivalent statements , maka R = I, jadi det(R) = 1 ≠ 0 dan det(A) ≠ 0. Sebaliknya, jika det(A) ≠ 0, maka det(R) ≠ 0, jadi R tidak memiliki baris yang nol. Sesuai dengan teorema R = I, maka A adalah dapat di-invers. Tapi jika matrix bujur sangkar dengan 2 baris/kolom yang proposional adalah tidak dapat diinvers.

Contoh Soal :

A=\begin{bmatrix}
 1 &  2 &  3\\
 1 &  0 &  1\\
 2 &  4 &  6\\
\end{bmatrix}

karena det(A) = 0. Maka A adalah dapat diinvers.

Sistem Linear Dalam Bentuk Ax = λx[sunting | sunting sumber]

dalam sistem aljabar linear sering ditemukan

      Ax = λx    ; dimana λ adalah skalar

sistem linear tersebut dapat juga ditulis dengan λx-Ax=0, atau dengan memasukkan matrix identitas menjadi

      (λI - A) x = 0

contoh:

diketahui persamaan linear

      x1 + 3x2 = λx1
     4x1 + 2x2 = λx2

dapat ditulis dalam bentuk

     \begin{bmatrix} 1 & 3\\ 4 & 2\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} = λ \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix}

yang kemudian dapat diubah

A =\begin{bmatrix} 1 & 3\\ 4 & 2\\ \end{bmatrix}dan x =\begin{bmatrix} x_1\\ x_2\\ \end{bmatrix}

yang kemudian dapat ditulis ulang menjadi

     λ \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} - \begin{bmatrix} 1 & 3\\ 4 & 2\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}
     λ \begin{bmatrix} 1 & 0\\ 0 & 1\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} - \begin{bmatrix} 1 & 3\\ 4 & 2\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}
     \begin{bmatrix} \lambda\,\!-1 & -3\\ -4 & \lambda\,\!-2\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}

sehingga didapat bentuk

     λ I - A = \begin{bmatrix} \lambda\,\!-1 & -3\\ -4 & \lambda\,\!-2\\ \end{bmatrix}

namun untuk menemukan besar dari λ perlu dilakukan operasi

     detI - A) = 0  ;λ adalah eigenvalue dari A

dan dari contoh diperoleh

     detI - A) = \begin{bmatrix} \lambda\,\!-1 & -3\\ -4 & \lambda\,\!-2\\ \end{bmatrix} = 0

atau λ^2 - 3λ - 10 = 0

dan dari hasil faktorisasi di dapat λ1 = -2 dan λ2 = 5

dengan memasukkan nilai λ pada persamaan (λ I - A) x = 0, maka eigenvector bisa didapat bila λ = -2 maka diperoleh

      \begin{bmatrix} -3 & -3\\ -4 & -4\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}

dengan mengasumsikan x2 = t maka didapat x1 = t

      x = \begin{bmatrix} -t\\ t\\ \end{bmatrix}

Vektor dalam Ruang Euklidian[sunting | sunting sumber]

Euklidian dalam n-Ruang[sunting | sunting sumber]

Vektor di dalam n-Ruang Definisi : Jika n adalah sebuah integer positif, sebuah n- grup topel adalah sekuens dari n bilangan real (a1.a2.....an). Set dari semua grup yang terdiri dari n- grup topel dinamakan n-ruangdan dituliskan sebagai Rn.

Jika n = 2 atau 3, sudah menjadi kebiasaan untuk menggunakan istilah grup pasangan dan grup dari tiga secara respektif, daripada 2-grup topel atau 3- grup topel. Keitka n = 1, setiap n – grup topel terdiri dari satu bilangan real, sehingga R1 bisa dilihat sebagai set dari bilangan real. Kita akan menuliskan R daripada R1 pada set ini.

Mungkin kita telah mmepelajari dalam bahan 3-ruang symbol dari (a1, a2, a3) mempunyai dua interpretasi geometris yang berbeda : ini bisa diinterpretasikan sebagai titik, yang dalam kasus ini a2, a2, a3 merupakan koordinat, atau ini bisa diinterpretasikan sebagai vector, dimana a1, a2, a3 merupakan komponen vector. Selanjutnya kita bisa melihat bahwa n – grup topel (a1, a2, ...., an) bisa dilihat sebagai antara sebuah “poin umum” atau “vector umum”- perbedaan antara keduanya tidak penting secara matematis. Dan juga kita bisa menjelaskan 5- topel (-2, 4, 0 ,1 ,6) antara poin dalam R5 atau vector pada R5.


u1 = v1

                               u2 = v2
                               un = vn


Penjumlahan u + v didefinisikan oleh


u + v = (u1 + v1, u2 + v2, ...., un + vn)

Dan jika k adalah konstanta scalar, maka perkalian scalar ku didefinisikan oleh


ku = (k u1, k u2,...,k un)

Operasi dari pertambahan dan perkalian scalar dalam definisi ini disebut operasi standar untuk Rn Vektor nol dalam Rn didenotasikan oleh 0 dan difenisikan ke vektor


0 = (0, 0,...., 0)

Jika u = (u1, u2, ...., un) dalam setiap vector dalam Rn, maka negative (atau invers aditif) dari u dituliskan oleh –u dan dijelaskan oleh


-u = (-u1, -u2, ...., -un)

Perbedaan dari vector dalam Rn dijelaskan oleh


v – u = v + (-u)

atau, dalam istilah komponen,


v – u = (v1-u1, v2-u2, ...., vn-un)

Sifat-sifat dari vektor dalam R^n

jika \mathbf{u} = u_{1}, u_{2},..., u_{n} , \mathbf{v} = v_{1}, v_{2},..., v_{n} , dan \mathbf{w} = w_{1}, w_{2},..., w_{n} adalah vektor dalam R^n sedangkan k dan m adalah skalar, maka :

(a) u + v = v + u

(b) u + 0 = 0 + u = u

(c) u + (v + w) = (u + v) + w

(d) u + (-u) = 0 ; berarti, u - u = 0

(e) k (m u) = (k m) u

(f) k (u + v) = k u + k v

(g) (k + m) u = k u + m u

(h) 1u = u


Perkalian dot product \mathbf{u}\cdot\mathbf{v} didefinisikan sebagai


\mathbf{u}\cdot\mathbf{v} = u_{1}v_{1} + u_{2}v_{2} + \cdots + u_{n}v_{n}

Contoh Penggunaan Vektor dalam Ruang Dimensi Tinggi[sunting | sunting sumber]

  • Data Eksperimen – Ilmuwan melakukan experimen dan membuat n pengukuran numeris setiap eksperimen dilakukan. Hasil dari setiap experiment bisa disebut sebagai vector y= (y1,y2,...,yn) dalam R^n dalam setiap y_1,y_2,....,y_n adalah nilai yang terukur.
  • Penyimpanan dan Gudang – Sebuah perusahaan transportasi mempunyai 15 depot untuk menyimpan dan mereparasi truknya. Pada setiap poin dalam waktu distribusi dari truk dalam depot bisa disebut sebagai 15-topel x= (x_1,x_2,...,x_15) dalam setiap x_1 adalah jumlah truk dalam depot pertama dan x_2 adalah jumlah pada depot kedua., dan seterusnya.
  • Rangkaian listrik – Chip prosesor didesain untuk menerima 4 tegangan input dan mengeluarkan 3 tegangan output. Tegangan input bisa ditulis sebagai vector dalam R^4 dan tegangan output bisa ditulis sebagai R^3. Lalu, chip bisa dilihat sebgai alat yang mengubah setiap vektor input v = (v_1,v_2,v_3,v_4) dalam R^4 ke vector keluaran w = (w_1,w_2,w_3) dalam R^3.
  • Analisis citra – Satu hal dalam gambaran warna dibuat oleh layar komputer dibuat oleh layar komputer dengan menyiapkan setiap [pixel] (sebuah titik yang mempunyai alamat dalam layar) 3 angka yang menjelaskan hue, saturasi, dan kecerahan dari pixel. Lalu sebuah gambaran warna yang komplit bisa diliahat sebgai 5-topel dari bentuk v = (x,y,h,s,b) dalam x dan y adalah kordinat layar dari pixel dan h,s,b adalah hue, saturation, dan brightness.
  • Ekonomi – Pendekatan kita dalam analisis ekonomi adalah untuk membagi ekonomidalam sector (manufaktur, pelayanan, utilitas, dan seterusnya ) dan untuk mengukur output dari setiap sector dengan nilai mata uang. Dalam ekonomi dengan 10 sektor output ekonomi dari semua ekonomi bisa direpresentasikan dngan 10-topel s = (s_1,s_2,s_3,...,s_10) dalam setiap angka s_1,s_2,...,s_10 adalah output dari sektor individual.
  • Sistem Mekanis – Anggaplah ada 6 partikel yang bergerak dalam garis kordinat yang sama sehingga pada waktu t koordinat mereka adalah x_1,x_2,...,x_6 dan kecepatan mereka adalah v_1,v_2,...,v_6. Informasi ini bisa direpresentasikan sebagai vector

V = (x_1,x_2,x_3,x_4,x_5,x_6,v_1,v_2,v_3,v_4,v_5,v_6,t) Dalam R^13. Vektor ini disebut kondisi dari sistem partikel pada waktu t.

  • Fisika - Pada teori benang komponen paling kecil dan tidak bisa dipecah dari Jagat raya bukanlah partikel tetapi loop yang berlaku seperti benang yang bergetar. Dimana jagat waktu Einstein adalah 4 dimensi, sedangkan benang ada dalam dunia 11-dimensi

Menemukan norm dan jarak[sunting | sunting sumber]

Menghitung Panjang vektor u dalam ruang R^n

jika u = (u_1,u_2,u_3,...,u_n)

Maka Panjang vektor u


|\bar{u}| = \sqrt{u_1^2 + u_2^2 + u_3^2 + . . . + u_n^2}

dan Menghitung jarak antara vektor u dengan vektor v


d(u,v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + (u_3 - v_3)^2 + . . . + (u_n - v_n)^2}

Bentuk Newton[sunting | sunting sumber]

interpolasi polinominal p(x)=anxn+an-1xn-1+...+a1x+a0 adalah bentuk standar. Tetapi ada juga yang menggunakan bentuk lain . Contohnya , kita mencari interpolasi titik dari data (x0,y0),(x1,y1),(x2,y2),(x3,y3).

Jika kita tuliskan P(x)=a3x3+a2x2+a1x+a0

bentuk equivalentnya : p(x)=a3(x-x0)3+p(x)=a2(x-x0)2+p(x)=a1(x-x0)+a0

dari kondisi interpolasi p(x0)=yo maka didapatkan a0=yo , sehingga dapat kita tuliskan menjadi

p(x)=b3(x-x0)(x-x1)(x-x2)+b2(x-x0)(x-x1)+b1(x-x0)+b0 inilah yang disebut newton form dari interpolasi , sehingga kita dapatkan :

p(x0)=b0

p(x1)=b1h1+b0

p(x2)=b2(h1+h2)h2+b1(h1+h2)+b0

p(x3)=b3(h1+h2+h3)(h2+h3)h3+b2(h1+h2+h3)(h2+h3)+b1(h1+h2+h3)+b0

sehingga jika kita tuliskan dalam bentuk matrix:

Operator Refleksi[sunting | sunting sumber]

Berdasarkan operator T:R2 -> R2 yang memetakan tiap vektor dalam gambaran simetris terhadap sumbu y, dimisalkan w=T(x), maka persamaan yang berhubungan dengan x dan w adalah:

x1 = -x = -x + 0y

x2 = y = 0x + y

atau dalam bentuk matrik : \begin{bmatrix} -1 & 0\\ 0 & 1\\ \end{bmatrix} \begin{bmatrix} x\\ y\\ \end{bmatrix} = \begin{bmatrix} w_1\\ w_2\\ \end{bmatrix}

Secara umum, operator pada R2 dan R3 yang memetakan tiap vektor pada gambaran simetrinya terhadap beberapa garis atau bidang datar dinamakan operator refleksi. Operator ini bersifat linier.

Operator Proyeksi[sunting | sunting sumber]

Berdasarkan operator T:R2 -> R2 yang memetakan tiap vektor dalam proyeksi tegak lurus terhadap sumbu x, dimisalkan w=T(x), maka persamaan yang berhubungan dengan x dan w adalah:

x1 = x = x + 0y

x2 = 0 = 0x + 0y

atau dalam bentuk matrik : \begin{bmatrix} 1 & 0\\ 0 & 0\\ \end{bmatrix} \begin{bmatrix} x\\ y\\ \end{bmatrix} = \begin{bmatrix} w_1\\ w_2\\ \end{bmatrix}

Persamaan tersebut bersifat linier, maka T merupakan operator linier dan matrikx T adalah: \begin{bmatrix} T\\ \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 0\\ \end{bmatrix}

Secara umum, sebuah operator proyeksi pada R2 dan R3 merupakan operator yang memetakan tiap vektor dalam proyeksi ortogonal pada sebuah garis atau bidang melalui asalnya.

Operator Rotasi[sunting | sunting sumber]

Sebuah operator yang merotasi tiap vektor dalam R2 melalui sudut ɵ disebut operator rotasi pada R2. Untuk melihat bagaimana asalnya adalah dengan melihat operator rotasi yang memutar tiap vektor searah jarum jam melalui sudut ɵ positif yang tetap. Unutk menemukan persamaan hubungan x dan w=T(x), dimisalkan ɵ adalah sudut dari sumbu x positif ke x dan r adalah jarak x dan w. Lalu, dari rumus trigonometri dasar x = r cos Θ ; y = r cos Θ dan w1 = r cos (ɵ + ɸ) ; w2= r sin (ɵ + ɸ)

Menggunakan identitas trigonometri didapat:

w1 = r cos ɵ cos ɸ - r sin ɵ sin ɸ

w2 = r sin ɵ cos ɸ + r cos ɵ sin ɸ

kemudian disubtitusi sehingga:

w1 = x cos Θ - y sin Θ

w2 = x sin Θ + y cos Θ

Persamaan di atas merupakan persamaan linier, maka T merupakan operator linier sehingga bentuk matrik dari persamaan di atas adalah: \begin{bmatrix} T\\ \end{bmatrix} = \begin{bmatrix} cos\Theta & -sin\Theta\\ sin\Theta & cos\Theta\\ \end{bmatrix}

Interpolasi Polinomial[sunting | sunting sumber]

Dengan menganggap masalah pada interpolasi polinomial untuk deret n + 1 di titik (x0,y0)...., (xn,yn). Maka, kita diminta untuk menemukan kurva p(x) = amx^m + am-1x^{m-1} + ... + a1x + a0 dari sudut minimum yang melewati setiap dari titik data. Kurva ini harus memenuhi

\begin{matrix}
{y_0}& = &a_mx_0^m &+& a_{m-1}x_0^{m-1} &+...+& a_1x_0 &+& a_0\\
{y_1}& = &a_mx_1^m &+& a_{m-1}x_1^{m-1} &+...+& a_1x_1 &+& a_0\\
\vdots& &\vdots& &\vdots& &\vdots& &\vdots\\
{y_n}& = &a_mx_n^m &+& a_{m-1}x_n^{m-1} &+...+& a_1x_n &+& a_0\\
\end{matrix}

karena xi diketahui, ini akan menuju pada sistem matrik di bawah ini \begin{bmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^m\\
1 & x_1 & x_1^2 & \cdots & x_1^m\\
\vdots & \vdots & \vdots & \cdots &\vdots\\
1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^m\\
1 & x_n & x_n^2 & \cdots & x_n^m\\
\end{bmatrix}\begin{bmatrix}
a_0\\
a_1\\
\vdots\\
a_{m-1}\\
a_m\\
\end{bmatrix} = \begin{bmatrix}
y_0\\
y_1\\
\vdots\\
y_{n-1}\\
y_n\\
\end{bmatrix}

Ingat bahwa ini merupakan sistem persegi dimana n = m. Dengan menganggap n = m memberikan sistem di bawah ini untuk koefisien interpolasi polinomial p(x):

\begin{bmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^n\\
1 & x_1 & x_1^2 & \cdots & x_1^n\\
\vdots & \vdots & \vdots & \cdots &\vdots\\
1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^n\\
1 & x_n & x_n^2 & \cdots & x_n^n\\
\end{bmatrix}\begin{bmatrix}
a_0\\
a_1\\
\vdots\\
a_{n-1}\\
a_n\\
\end{bmatrix} = \begin{bmatrix}
y_0\\
y_1\\
\vdots\\
y_{n-1}\\
y_n\\
\end{bmatrix} (1)

Matrix di atas diketahui sebagai Matrix Vandermonde; kolom j merupakan elemen pangkat j-1. Sistem linier pada (1) disebut menjadi Sistem Vandermonde.

Contoh soal: Cari interpolasi polinomial pada data (-1,0),(0,0),(1,0),(2,6) menggunakan Sistem Vandermonde.

Jawab: Bentuk Sistem Vandermonde(1): \begin{bmatrix}
1 & x_0 & x_0^2 & x_0^3\\
1 & x_1 & x_1^2 & x_1^3\\
1 & x_2 & x_2^2 & x_2^3\\
1 & x_3 & x_3^2 & x_3^3\\
\end{bmatrix}\begin{bmatrix}
a_0\\
a_1\\
a_2\\
a_3\\
\end{bmatrix} = \begin{bmatrix}
y_0\\
y_1\\
y_2\\
y_3\\
\end{bmatrix}

Untuk data di atas, kita mempunyai \begin{bmatrix}
1 & -1 & 1 & -1\\
1 & 0 & 0 & 0\\
1 & 1 & 1 & 1\\
1 & 2 & 4 & 8\\
\end{bmatrix}\begin{bmatrix}
a_0\\
a_1\\
a_2\\
a_3\\
\end{bmatrix} = \begin{bmatrix}
0\\
0\\
0\\
6\\
\end{bmatrix}

\begin{bmatrix}
1 & -1 & 1 & -1 & 0\\
1 & 0 & 0 & 0 & 0\\
1 & 1 & 1 & 1 & 0\\
1 & 2 & 4 & 8 & 6\\
\end{bmatrix}

Untuk mendapatkan solusinya, digunakan Gaussian Elimination

\begin{bmatrix}
1 & -1 & 1 & -1 & 0\\
0 & 1 & -1 & 1 & 0\\
0 & 2 & 0 & 2 & 0\\
0 & 3 & 3 & 9 & 6\\
\end{bmatrix} Baris ke-2, ke-3, dan ke-4 dikurangi baris pertama

\begin{bmatrix}
1 & -1 & 1 & -1 & 0\\
0 & 1 & -1 & 1 & 0\\
0 & 1 & 0 & 1 & 0\\
0 & 1 & 1 & 3 & 2\\
\end{bmatrix} Baris ke-3 dibagi dengan 2, sedangkan baris ke-4 dibagi dengan 3

\begin{bmatrix}
1 & -1 & 1 & -1 & 0\\
0 & 1 & -1 & 1 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 1 & 1 & 3 & 2\\
\end{bmatrix} Baris ke-3 dikurangi baris ke-2

\begin{bmatrix}
1 & -1 & 1 & -1 & 0\\
0 & 1 & -1 & 1 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 2 & 2 & 2\\
\end{bmatrix} Baris ke-4 dikurangi baris ke-2

\begin{bmatrix}
1 & -1 & 1 & -1 & 0\\
0 & 1 & -1 & 1 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 1 & 1 & 1\\
\end{bmatrix} Baris ke-4 dibagi dengan 2

\begin{bmatrix}
1 & -1 & 1 & -1 & 0\\
0 & 1 & -1 & 1 & 0\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 & 1\\
\end{bmatrix} Baris ke-4 dikurangi baris ke-3

Didapatkan persamaan linier dari persamaan matrix di atas

\begin{matrix}
a_0&+&a_1&+&a_2&+&a_3 &=&0\Longleftrightarrow a_0 = 0\\
& &a_1&-&a_2&+&a_3&=&0\Longleftrightarrow a_1 = -1\\
& & & &a_2& & &=&0\\
& & & & & &a_3&=&1\\
\end{matrix}

Jadi, interpolasinya adalah p(x) = x^3 - x\,