Geometri diferensial

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Sebuah segitiga yang melekat pada bidang lengkung berbentuk pelana kuda (paraboloid), juga dua garis ultra-sejajar yang divergen.

Geometri diferensial adalah sebuah disiplin matematika yang menggunakan teknik-teknik kalkulus diferensial dan kalkulus integral, juga aljabar linear dan aljabar multilinear, hingga masalah-masalah kajian dalam geometri. Teori kurva ruang dan bidang dalam ruang euklides tiga dimensi membentuk basis untuk pengembangan geometri diferensial pada abad ke-18 dan abad ke-19. Sejak akhir abad ke-19, geometri diferensial telah berkembang menjadi sebuah lapangan yang memperhatikan secara lebih umum dengan struktur geometri pada lipatan terdiferensialkan. Geometri diferensial berhubungan dekat dengan topologi diferensial, dan dengan aspek-aspek geometri pada teori persamaan diferensial. Geometri diferensial permukaan menangkap banyak gagasan penting dan karakteristik teknik pada lapangan ini.

Cabang-cabang geometri diferensial[sunting | sunting sumber]

Geometri Riemannian[sunting | sunting sumber]

Geometri Riemannian mengkaji lipatan Riemannian, lipatan mulus dengan metrik Riemannian. Ini adalah sebuah konsep tentang jarak yang disajikan dalam artian bentuk bilinear simetris definit positif mulus yang terdefinisi pada ruang tangen pada tiap-tiap titik. Geometri Riemannian memperumum geometri euklides kepada ruang-ruang yang tidak harus datar/rata (flat), meskipun mereka masih menyerupai ruang euklides pada tiap-tiap titik secara infinitesimal, yaitu dalam hampiran orde satu. Berbagai konsep yang didasarkan pada panjang, seperti panjang lengkungan suatu kurva, luas suatu bidang, dan volume suatu padatan; semuanya memiliki analogi natural dalam geometri Riemannian. Gagasan tentang turunan berarah suatu fungsi dari kalkulus peubah banyak diperluas dalam geometri Riemannian menjadi gagasan turunan kovarian suatu tensor. Ada banyak konsep dan teknik analisis dan persamaan diferensial yang telah diperumum untuk berurusan dengan lipatan Riemannian.

Difeomorfisma yang mengawetkan jarak antara lipatan-lipatan Riemannian disebut isometri. Gagasan ini dapat pula didefinisikan secara lokal, yaitu untuk lingkungan titik-titik yang kecil. Dua kurva beraturan sembarang adalah isometris secara lokal. Tetapi, Theorema Egregium yang diajukan Carl Friedrich Gauss menunjukkan bahwa untuk permukaan, keujudan suatu isometri lokal memaksakan kondisi-kondisi kompatibilitas yang kuat pada metrik-metrik mereka: kurvatur Gaussian pada titik-titik yang bersesuaian pastilah sama. Dalam dimensi yang lebih tinggi, tensor kurvatur Riemann adalah suatu invarian titik-demi-titik yang penting yang berasosiasi dengan lipatan Riemannian yang mengukur seberapa dekat ia untuk dikatakan datar/rata. Sebuah kelas penting lipatan Riemannian adalah ruang simetris Riemannian, yang kurvaturnya tidak harus konstan. Hal ini adalah analog terdekat dengan bidang dan ruang "biasa" yang diperhatikan dalam geometri euklides dan non-euklides.

Geometri Riemaniann semu[sunting | sunting sumber]

Geometri Riemannian semu memperumum geometri Riemannian kepada kasus di mana tensor metrik tidak harus definit positif. Sebuah kasus khusus hal ini adalah "Lipatan Lorentzian", yakni basis matematika untuk teori relativitas umum tentang gravitasi-nya Einstein.

Geometri Finsler[sunting | sunting sumber]

Geometri Finsler memiliki Lipatan Finsler sebagai objek kajian utama. Ini adalah lipatan diferensial dengan suatu metrik Finsler, yaitu norma Banach yang terdefinisi pada tiap-tiap ruang tangen. Metrik Finsler adalah struktur yang jauh lebih umum daripada metrik Riemannian. Struktur Finsler pada suatu lipatan M adalah fungsi F : TM → [0,∞) sedemikian sehingga:

  1. F(x, my) = |m|F(x,y) untuk setiap x, y pada TM,
  2. F adalah terdiferensialkan secara tak-hingga pada TM − {0},
  3. Hessian vertikal dari F2 adalah definit positif.

Geometri simplektis[sunting | sunting sumber]

Geometri simplektis adalah kajian tentang lipatan simplektis. Lipatan yang hampir simplektis adalah lipatan terdiferensialkan yang diperlengkapi dengan bentuk bilinear matriks asimetris non-degenerat bervariasi mulus pada tiap-tiap ruang tangen, yaitu bentuk-2 ω non-degenerat, yang disebut bentuk simplektis. Lipatan simplektis adalah lipatan yang hampir simplektis di mana bentuk simplektis ω adalah tertutup: dω = 0.

Difeomorfisma antara dua lipatan simplektis yang mengawetkan bentuk symplektis disebut simplektomorfisma. Bentuk bilinear asimetris non-degenerat hanya dapat ujud pada ruang vektor berdimensi genap, sehingga lipatan simplektis haruslah berdimensi genap. Dalam dimensi 2, lipatan simplektis hanyalah permukaan yang disertai dengan sebentuk luasan, dan simplektomorfisma adalah difeomorfisma yang mengawetkan luas. Ruang fasa suatu sistem mekanik adalah lipatan simplektis dan mereka hadir secara tersirat dalam karya Joseph Louis Lagrange tentang mekanika analitik dan kemudian dalam mekanika Hamiltonian karya Carl Gustav Jacobi dan William Rowan Hamilton.

Berbeda dengan geometri Riemannian, di mana kurvatur menyediakan invarian lokal dari lipatan Riemannian, teorema Darboux menyatakan bahwa semua lipatan simplektis adalah isomorfik secara lokal. Invarian-invarian suatu lipatan simplektis adalah global pada sifatnya dan aspek-aspek topologi menainkan peran yang penting dalam geometri simplektis. Hasil pertama dalam topologi simplektis adalah (barangkali) teorema Poincaré-Birkhoff, yang diperdugakan oleh Henri Poincaré dan kemudian dibuktikan oleh G.D. Birkhoff pada tahun 1912. Teorema ini mendaku bahwa jika suatu luasan yang mengawetkan peta dari suatu anulus melilit tiap-tiap komponen perbatasan dalam arah yang bertentangan, maka peta tersebut memiliki paling sedikit dua titik tetap.[1]

Geometri kontak[sunting | sunting sumber]

Geometri kontak berurusan dengan lipatan tertentu yang berdimensi ganjil. Geometri kontak ini dekat dengan geometri simplektis dan seperti yang belakangan, geometri kontak mulai dipertanyakan dalam mekanika klasik. Suatu struktur kontak pada lipatan M berdimensi (2n+1) diberikan oleh sebuah lapangan bidang-hiper mulus H dalam bundel tangen, yakni sejauh mungkin berasosiasi dengan himpunan level fungsi terdiferensialkan pada M (istilah teknisnya adalah "distribusi bidang-hiper tak-terintegralkan lengkap "). Di dekat titik p, distribusi bidang-hiper ditentukan oleh bentuk-1 yang tidak menghilang di manapun \alpha, yang unik terhadap perkalian oleh sebuah fungsi yang tidak menghilang di manapun:

 H_p = \ker\alpha_p\subset T_{p}M.

Bentuk-1 lokal pada M adalah bentuk kontak jika batasan turunan eksterior terhadap H adalah bentuk-dua non-degenerat dan dengan demikian menginduksi struktur simplektis pada Hp di tiap-tiap titik. Jika distribusi H dapat didefinisikan oleh bentuk-satu global \alpha, maka bentuk ini adalah kontak jika dan hanya jika bentuk berdimensi-puncak

\alpha\wedge (d\alpha)^n

adalah sebuah bentuk volume pada M, yaitu tidak menghilang di manapun. Sebuah analog kontak dari teorema Darboux menyatakan: semua struktur kontak pada lipatan berdimensi-ganjil adalah isomorfik secara lokal dan dapat dibawa ke bentuk normal lokal tertentu oleh suatu sistem koordinat terpilih yang sesuai.

Geometri kompleks dan Geometri Kähler[sunting | sunting sumber]

Geometri diferensial kompleks adalah kajian lipatan kompleks. Suatu lipatan hampir kompleks adalah lipatan real M, yang diperlengkapi dengan tensor berjenis (1, 1), yaitu endomorfisma bundel vektor (disebut struktur hampir kompleks)

 J:TM\rightarrow TM , sedemikian sehingga J^2=-1. \,

Berdasarkan definisi berikut ini, suatu lipatan hampir kompleks adalah berdimensi genap.

Lipatan hampir kompleks dikatakan kompleks jika N_J=0, di mana N_J adalah tensor berjenis (2, 1) yang berhubungan dengan J, yang disebut tensor Nijenhuis (atau kadang-kadang torsi). Lipatan hampir kompleks adalah kompleks jika dan hanya jika ia mengizinkan koordinat atlas holomorfik. Struktur hampir Hermitian diberikan oleh struktur hampir kompleks J, bersama-sama dengan metrik Riemannian g, memenuhi syarat kompatibilitas

g(JX,JY)=g(X,Y) \,.

Struktur hampir Hermitian mendefinisikan secara natural suatu bentuk-dua diferensial

\omega_{J,g}(X,Y):=g(JX,Y) \,.

Dua syarat berikut ini adalah ekivalen:

  1.  N_J=0\mbox{ and }d\omega=0 \,
  2. \nabla J=0 \,

di mana \nabla adalah koneksi Levi-Civita dari g. Dalam kasus ini, (J, g) disebut struktur Kähler, dan lipatan Kähler adalah lipatan yang diperlengkapi dengan struktur Kähler. Secara khusus, lipatan Kähler adalah lipatan simplektis dan kompleks. Kelas yang lebih besar dari lipatan Kähler (kelas lipatan Hodge) diberikan oleh semua varietas projektif kompleks mulus.

Geometri CR[sunting | sunting sumber]

Geometri CR adalah kajian geometri intrinsik dari batas-batas domain di dalam lipatan kompleks.

Topologi diferensial[sunting | sunting sumber]

Topologi diferensial adalah kajian invarian geometris (global) tanpa bentuk metrik atau simplektis. Topologi diferensial bermula dari operasi-operasi natural, seperti turunan Lie dari bundel vektor natural dan diferensial de Rham dari bentuk diferensial. Selain algebroid Lie, juga algebroid Courant mulai memainkan peran yang lebih penting.

Grup Lie[sunting | sunting sumber]

Grup Lie adalah grup di dalam kategori lipatan mulus. Di samping sifat-sifat aljabar, grup Lie juga memanfaatkan sifat-sifat geometri diferensial. Konstruksi yang paling jelas adalah bahwa aljabar Lie yakni ruang tangen pada unit yang diperlengkapi dengan kurung Lie di antara lapangan-lapangan vektor invarian-kiri. Di samping teori struktur, terdapat juga lapangan luas teori representasi.

Bundel dan koneksi[sunting | sunting sumber]

Intrinsik versus ekstrinsik[sunting | sunting sumber]

Terapan[sunting | sunting sumber]

Lihat pula[sunting | sunting sumber]

Referensi[sunting | sunting sumber]

  1. ^ Adalah mudah untuk membuktikan bahwa luasan itu mengawetkan syarat (atau syarat lilit) tidak dapat dihilangkan. Dengan catatan bahwa jika seseorang berupaya memperluas teorema ini ke dimensi yang lebih besar, maka orang tersebut mungkin akan menduga bahwa suatu volume yang mengawetkan peta suatu jenis tertentu mestilah memiliki titik tetap. Ini gagal untuk dimensi yang lebih besar daripada 3.

Bacaan lanjutan[sunting | sunting sumber]

  • Wolfgang Kühnel (2002). Differential Geometry: Curves - Surfaces - Manifolds (ed. 2nd ed.). ISBN 0-8218-3988-8. 
  • Theodore Frankel (2004). The geometry of physics: an introduction (ed. 2nd ed.). ISBN 0-521-53927-7. 
  • Spivak, Michael (1999). A Comprehensive Introduction to Differential Geometry (5 Volumes) (ed. 3rd Edition). 
  • do Carmo, Manfredo (1976). Differential Geometry of Curves and Surfaces. ISBN 0-13-212589-7.  Classical geometric approach to differential geometry without tensor analysis.
  • Kreyszig, Erwin (1991). Differential Geometry. ISBN 0-486-66721-9.  Good classical geometric approach to differential geometry with tensor machinery.
  • do Carmo, Manfredo Perdigao (1994). Riemannian Geometry.  Unknown parameter |translator= ignored (help)
  • McCleary, John (1994). Geometry from a Differentiable Viewpoint. 
  • Bloch, Ethan D. (1996). A First Course in Geometric Topology and Differential Geometry. 
  • Gray, Alfred (1998). Modern Differential Geometry of Curves and Surfaces with Mathematica (ed. 2nd ed.). 
  • Burke, William L. (1985). Applied Differential Geometry. 
  • ter Haar Romeny, Bart M. (2003). Front-End Vision and Multi-Scale Image Analysis. ISBN 1-4020-1507-0. 

Pranala luar[sunting | sunting sumber]