Karakteristik teknik bahan pertanian
Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. (Januari 2018) |
Karakteristik teknik bahan pertanian adalah sifat fisik dari bahan pertanian yang dianalisis dengan tujuan memudahkan dalam mendesain proses dan alat dan mesin yang terkait dengan penanganan dan aplikasi bahan pertanian. Contoh bahan pertanian yaitu benih, pupuk, hasil pertanian, hingga limbah biologis hasil aktivitas pertanian. Sifat fisik yang dianalisis adalah ukuran sederhana (bentuk, panjang, luas permukaan, volume, massa, massa jenis), sifat listrik, sifat panas (mencakup konduktivitas, difusivitas, kemampuan pindah panas, dan sebagainya), karakteristik air (mencakup kadar air, higroskopisitas, kadar air kesetimbangan, dan sebagainya), sifat optik, tegangan mekanis, rheologi, sifat aerodinamika dan hidrodinamika, dan sebagainya. Karakteristik tak langsung seperti gesekan yang terjadi antara bahan pertanian dan bahan pertanian dengan media lain serta kerusakan mekanik dan fisik juga dianalisis.
Ukuran sederhana
[sunting | sunting sumber]Bentuk dan ukuran
[sunting | sunting sumber]Fungsi dari kebanyakan mesin pertanian sangat dipengaruhi oleh bentuk dan ukuran bahan yang diproses. Contoh mesin tanam, ayakan (sifter), dan saringan membutuhkan pengetahuan mengenai dimensi ukuran bahan yang diproses agar dapat bekerja dengan baik. Pada proses tertentu, selain bentuk juga kerapatan bahan (bulk density).
Bentuk produk juga mempengaruhi koefisien pengepakan dalam suatu kontainer. Koefisien pengepakan secara teoretis nilainya mudah dihitung jika diasumsikan bahwa bentuk bahan adalah bulat sempurna. Namun kenyataan di lapangan, tidak ada bahan pertanian yang memiliki bentuk bulat sempurna. Selain itu, bentuk bahan pertanian juga dapat berubah akibat proses penanganan yang tidak benar sehingga menimbulkan kerusakan mekanis.
Indeks bentuk yang sering digunakan adalah kebulatan (roundness, sphericity), rasio kebulatan, rasio aksial, dan sebagainya. Berikut adalah deskripsi bentuk bahan pertanian:[1]
Bentuk | Deskripsi |
---|---|
Bulat | Mendekati bola |
Oblate | Pipih di ujung tangkai |
Oblong | Diameter vertikal > diameter horizontal |
Mengerucut (conic) | Mengecil ke arah ujung |
Ovate | Berbentuk telur, agak lebar di ujung tangkai |
Blique | Sumbu yang berhubungan dengan tangkai |
Obovate | Kebalikan dari ovate |
Eliptik | Mendekati bentuk elipsoid |
Truncate | Memiliki dua akhir bertingkat atau rata |
Berrusuk | Potongan melintang ke dalam, sisi-sisi lebih atau kurang siku |
Regular | Bentuk potongan horisontal mendekati lingkaran |
Irregular | Bentuk potongan melintang horisontal menyimpang dari lingkaran |
Luas permukaan
[sunting | sunting sumber]Luas permukaan bahan-bahan hasil pertanian bermanfaat untuk berbagai kebutuhan seperti menentukan kapasitas laju fotosintesis, menentukan hubungan tanaman, tanah, dan air (transpirasi, evapotranspirasi); menentukan efisiensi penggunaan pestisida, hingga pengujian kualitas produk hasil pertanian (misal kualitas daun tembakau). Metode yang digunakan adalah planimeter di mana bayangan benda diproyeksikan di atas kertas, lalu luas bayangan benda. Metode lain yang lebih maju adalah dengan menggunakan alat yang disebut dengan air-flow planimeter. Perkembangan teknologi sinar laser dan optik yang dihubungkan dengan komputer mempercepat proses ini dengan fasilitas pemrosesan gambar (image processing).
Berdasarkan teori bahan,[2] ditemukan bahwa:
di mana,
- adalah volume (m3)
- adalah luas permukaan bahan yang berbentuk cembung (m2)
Volume dan massa jenis
[sunting | sunting sumber]Volume dan massa jenis berbagai produk pertanian berperan penting pada teknologi proses dan dalam evaluasi kualitas produk. Penggunaan sifat ini ada pada teknologi pengeringan, penyimpanan, penentuan tingkat kemasakan buah, dan lain-lain. Umumnya keduanya diukur secara bersamaan menggunakan metode displacement (perpindahan massa) setelah berat bahan diukur.
di mana,
- adalah volume bahan (m3),
- adalah massa air yang dipindahkan (kg), dan
- adalah massa jenis air (kg/m3)
Beberapa jenis bahan pertanian dapat menyerap air selama pengukuran menggunakan metode ini, sehingga perlu diganti dengan fluida lain, misal toluena yang hampir tidak diserap oleh bahan pertanian.
Porositas
[sunting | sunting sumber]Porositas bahan dan gabungan sejumlah bahan curah berperan penting dalam pengeringan karena mempengaruhi pergerakan air dan udara di dalam bahan (bahan tunggal) atau di antara bahan (bahan curah). Porositas merupakan rasio antara volume rongga terhadap volume total produk.
Reologi
[sunting | sunting sumber]Bahan pertanian merupakan benda yang dapat terus menerus terpapar gaya selama pemrosesan, dari pemanenan, pengemasan, pemrosesan, transportasi, dan penyimpanan. Sehingga pengetahuan tentang sifat reologi penting untuk mencegah kerusakan dan mengefisiensikan proses penanganan bahan pertanian.
Istilah reologi yang umum seperti modulus Young, kekuatan tensil, dan sebagainya dapat diaplikasikan. Beberapa ilmuwan seperti Mohsenin, Sitkei, dan Tsytovich menggunakan istilah bioyield point untuk menggambarkan sifat reologi yang tidak ditemui pada bahan lain. Bioyield point adalah titik pada kurva tegangan-deformasi di mana tegangan berkurang atau konstan dengan peningkatan deformasi.[3] Titik ini mencerminkan sensitivitas dari bahan biologis terhadap kerusakan. Definisinya hampir sama dengan yield point, hanya berbeda bentuk ketika diaplikasikan ke dalam kurva.
Berikut adalah tabel sifat reologi beberapa bahan pertanian.[3]
Bahan | Beban pada puncak (N) |
Tegangan pada puncak (N/mm2) |
Regangan pada puncak (%) |
Beban ketika patah (N) |
Tegangan ketika patah (N/mm2) |
Regangan ketika patah (%) |
Beban pada titik yield (N) |
Tegangan pada titik yield (N/mm2) |
Regangan pada titik yield (%) |
Modulus Young (N/mm2) |
---|---|---|---|---|---|---|---|---|---|---|
Beras | 25032 | 16.46 | 18.79 | 25032 | 16.46 | 18.79 | 5482.0 | 3.61 | 6.24 | 85.79 |
Jagung | 15085 | 9.92 | 28.95 | 15085 | 9.92 | 28.95 | 3460.0 | 2.28 | 12.51 | 31.06 |
Sorgum | 15034 | 9.89 | 39.82 | 15034 | 9.89 | 39.82 | 5147.0 | 3.39 | 28.69 | 26.83 |
Cowpea | 15015 | 9.87 | 29.49 | 15012 | 9.87 | 29.50 | 3197.0 | 2.10 | 10.97 | 24.62 |
Garri | 15031 | 9.89 | 40.27 | 15031 | 9.89 | 40.27 | 5015.1 | 3.30 | 27.75 | 22.37 |
- Catatan: Garri adalah adonan yang dibuat dari tepung tapioka, makanan khas wilayah Afrika Barat
Sifat aero-hidrodinamika
[sunting | sunting sumber]Penanganan bahan pertanian sering kali memanfaatkan sifat ketahanannya terhadap udara dan air, misal penanganan biji-bijian menggunakan elevator biji-bijian tipe konveyor udara. Hal yang paling mudah terliat, seperti kayu yang telah ditebang juga dipindahkan ke tempat lain dengan dialirkan di sungai. Penanganan lain seperti pemisahan endosperma gandum dari sekamnya menggunakan sifat kelajuan terminal (terminal velocity) dari gandum dan sekamnya, dengan menggunakan kipas udara berkecepatan tertentu sehingga mampu menerbangkan sekam namun tidak menerbangkan endosperma gandum.
Benda yang berada dalam medium mengalir menerima gaya friksi dan gaya tekan, yang diistilahkan dengan gaya hambat (drag force). Besarnya gaya hambat dihitung dengan persamaan:
dengan
- adalah koefisien hambat,
- ' adalah luas penampang bahan (m2),
- adalah massa jenis fluida (kg/m3), dan
- adalah laju aliran fluida.
Berikut adalah koefisien hambat dan kecepatan terminal dari berbagai bahan pertanian:[4]
Jenis produk | Koefisien hambat | Kecepatan terminal (m/s) |
---|---|---|
Gandum | 0.50 0.85[5] |
9.6 8.41-9.06[5] |
Barley | 0.50 0.98[5] |
7.6 7.23-7.24[5] |
Jagung | 0.56-0.7 | 11.4 |
Lentil | 0.76[5] | 10.40-10.47[5] |
Kacang arab | 0.81[5] | 14.47-16.27[5] |
Kedelai | 0.45 | 14.5 |
Oat | 0.47-0.51 | 6.6 |
Kentang | 0.64 | 32.0 |
Apel | 42.0 | |
Aprikot | 34.0 | |
Ceri | 24.0 | |
Persik | 42-44 | |
Plum | 32-34 |
Gesekan pada bahan pertanian
[sunting | sunting sumber]Gesekan pada banyak kasus sangat penting untuk dianalisis pada semua bidang teknik pertanian. Gesekan selalu terjadi pada beberapa bentuk selama pergerakan bahan dan mempengaruhi gaya yang dihasilkan. Di dalam silo dan struktur penyimpanan lainnya, beban vertikal pada dinding ditentukan oleh koefisien gesekan. Selama pemindahan secara pneumatis, khususnya pada bahan berkonsentrasi tinggi, gesekan antara bahan dengan dinding merupakan hambatan yang cukup penting. Elemen tertentu pada alat pengangkut, misalnya konveyor skrup, dapat dihitung jika koefisien gesekan diketahui. Perilaku produk curah dan butiran sangat tergantung pada nilai koefisien gesekan. Gesekan berperan selama proses pemotongan dan pengepresan produk pertanian.
Di bawah ini merupakan tabel koefisien gesek beberapa bahan pertanian.[6] Perhitungan gaya geseknya sama dengan perhitungan gaya gesek biasa.
Bahan | Permukaan | Koefisien gesek statis |
Koefisien gesek dinamis |
---|---|---|---|
Alfalfa, pelet | Baja | 0.22 | 0.17 |
Alfalfa, pelet | Kayu | 0.39 | 0.28 |
Alfalfa, potongan | Baja | 0.37 | 0.34 |
Alfalfa, potongan | Kayu | 0.49 | 0.37 |
Barley | Beton | 0.52 | |
Barley | Kayu | 0.31 | |
Barley | Lembaran logam galvanis |
0.31 | |
Jagung pipil | Beton | 0.35-0.54 | |
Jagung pipil | Kayu | 0.37 | |
Jagung pipil | Lembaran logam galvanis |
0.37 | |
Jagung pipil | Polietilena | 0.38 | |
Jagung pipil | Teflon | 0.12 | |
Jagung pipil | Karet | 0.44 | |
Jagung fermentasi | Baja | 0.60 | 0.66-0.70 |
Oat | Beton | 0.44 | |
Oat | Kayu | 0.29 | |
Oat | Lembaran metal galvanis |
0.24 | |
Cangkang kerang | Baja | 0.38 | 0.35 |
Cangkang kerang | Kayu | 0.60 | |
Beras | Baja | 0.45 | |
Beras | Kayu | 0.44 | |
Kedelai | Beton | 0.52 | |
Kedelai | Kayu | 0.35 | |
Kedelai | Lembaran logam galvanis |
0.20 | |
Kedelai | Karet | 0.22 | |
Jerami | Baja | 0.20 | 0.30 |
Gandum | Beton | 0.51 | |
Gandum | Kayu | 0.31 | |
Gandum | Lembaran logam galvanis |
0.10 |
Ketika suatu bahan curah atau butiran dikeluarkan dari bukaan bagian bawah silo (funneling), atau ketika ditumpahkan ke lantai silo dan membentuk tumpukan (filling), koefisien gesek antar partikel akan mempengaruhi sudut kemiringan tumpukan dari dasar ke puncak tumpukan. Sudut ini disebut dengan sudut tenang (angle of repose). Pengetahuan mengenai sudut tenang ini penting dalam mendesain silo dan mesin pemanen kombinasi yang dilengkapi dengan penampungan hasil panen. Sudut tenang bahan pertanian ketika dalam proses funneling dan filling dapat berbeda. Umumnya sudut tenang meningkat ketika kadar air bahan lebih tinggi.[6]
Berikut adalah sudut tenang beberapa bahan pertanian:[6][7]
Bahan | Sudut tenang (derajat) |
---|---|
Abu kayu | 40° |
Kulit kayu | 45° |
Bekatul | 30–45° |
Kapur | 45° |
Biji Clover | 28° |
Kelapa parut | 45° |
Biji kopi segar | 35–45° |
Tanah | 30–45° |
Tepung jagung | 30-40° |
Tepung terigu | 45° |
Malt | 30–45° |
Urea (butiran) | 27° [8] |
Gandum | 27-41° |
Barley | 28-34.6° |
Jagung pipil | 27-38° |
Biji flax | 25° |
Oat | 32° |
Beras | 34-36° |
Kedelai | 29° |
Sifat optis bahan pertanian
[sunting | sunting sumber]Penggunaan cahaya dalam pertanian utamanya terkait dengan pensortiran bahan pertanian secara otomatis yang dideteksi dengan berbagai spektrum cahaya, dari infra merah sampai ultra ungu. Indikator yang dapat diukur dari penggunaan sifat optis ini antara lain kadar nutrisi, kadar air, kepadatan buah, dan kondisi fisik luar. Selain itu, sifat optis juga digunakan dalam pemanenan, misalnya untuk mengukur kadar gula dalam buah sebelum dipetik untuk mendapatkan hasil kematangan yang optimal. Selain untuk pengujian kualitas, cahaya juga digunakan untuk berbagai proses fisik dan kimiawi seperti pengeringan (karena cahaya infra merah berintensitas tinggi mampu menguapkan sejumlah besar air yang terkandung di dalam bahan pertanian) dan reaksi fotokimia pada bahan pertanian.[6]
Interaksi cahaya
[sunting | sunting sumber]Interaksi antara cahaya dan bahan pertanian terdiri dari reflektan, absorban, dan transmitan, kesemuanya dihitung dalam satuan rasio atau persen terhadap sejumlah cahaya yang dipaparkan ke bahan pertanian. Reflektan adalah sejumlah cahaya yang dipantulkan oleh bahan pertanian, absorban adalah sejumlah cahaya yang diserap oleh bahan pertanian, dan transmitan adalah sejumlah cahaya yang diteruskan oleh bahan pertanian. Umumnya yang diukur adalah reflektan dan transmitan, dan selisihnya adalah absorban.
Secara sederhana, dapat digambarkan sebagai berikut:
Dengan
- adalah jumlah intensitas awal cahaya yang dipaparkan ke buah,
- adalah reflektan,
- adalah absorban, dan
- adalah transmitan. Satuannya dapat berbeda-beda pada setiap jenis alat ukur.
Pemrosesan gambar
[sunting | sunting sumber]Pemrosesan gambar terkait dengan sifat cahaya tampak dengan indikator berupa sistem warna (hue, dapat berupa RGB maupun CMYK), value (tingkat kecerahan warna), dan chroma (tingkat kejenuhan warna). Pemrosesan gambar digunakan untuk membandingkan penampakan dari luar untuk menentukan kualitas dan ukuran bahan pertanian. Misal digunakan dalam sistem sortasi bunga yang baru dipanen dengan memperhatikan warna yang dimiliki bunga.
Sifat panas bahan pertanian
[sunting | sunting sumber]Sifat panas pada bahan pertanian penting dalam berbagai proses pemanasan (misal pengeringan, dehidrasi, evaporasi, sterilisasi, pasteurisasi, dan perebusan) dan pendinginan (pembekuan, pengeringan beku, pendinginan) sehingga energi yang digunakan untuk melakukan proses tersebut optimal dan tidak banyak yang terbuang. Karena dalam pertanian industri, jumlah bahan pertanian yang diproses bisa sangat banyak.
Sifat panas yang diukur yaitu panas jenis, konduktivitas panas, dan difusivitas panas.
Panas jenis bahan pertanian
[sunting | sunting sumber]Panas jenis adalah sejumlah panas yang dibutuhkan untuk meningkatkan temperatur satu unit massa sebanyak satu derajat. Panas jenis dalam satuan SI adalah kJ/kgK. Begitu panas jenis diketahui, jumlah panas yang dibutuhkan, , untuk menaikan temperatur zat bermassa dari temperatur awal ke temperatur akhir, dapat dihitung dengan rumus:
Berikut adalah tabel yang berisi nilai panas jenis beberapa bahan pertanian.[6]
Bahan | Kadar air (% basis basah) |
Panas jenis (kJ/kgK) di atas titik beku |
Panas jenis (kJ/kgK) di bawah titik beku |
---|---|---|---|
Avokad | 65 | 3.30 | 1.66 |
Apel | 75-85 | 3.72-4.02 | |
Beras | 12.0 | 1.65 | |
Daging ayam | 74 | 3.53 | 1.77 |
Daging domba muda | 90 | 3.89 | |
Daging kalkun | 64 | 3.28 | 1.65 |
Daging sapi (otot 60%) | 49 | 2.90 | 1.46 |
Daging sapi (otot 54%) | 45 | 2.80 | 1.41 |
Gandum keras | 9.2 | 1.55 | |
Gandum lunak | 9.0 | 1.57 | |
Ham (otot 74%) | 56 | 3.08 | 1.55 |
Ikan cod, fillet | 80 | 3.68 | 1.85 |
Ikan tuna utuh | 70 | 3.43 | 1.72 |
Jagung | 14.7 | 2.03 | |
Jamur | 90 | 3.94 | |
Jeruk 87 | 3.90 | 1.96 | |
Kacang tanah dengan kulit | 6 | 1.82 | 0.92 |
Kacang tanah dengan kulit, sangrai | 2 | 1.72 | 0.87 |
Keju Cheddar | 37 | 2.60 | 1.31 |
Keju Cottage | 60-70 | 3.27 | |
Kentang rebus | 80 | 3.64 | |
Kentang segar | 75 | 3.52 | |
Kentang, sup | 88 | 3.94 | |
Makaroni | 12.5-13.5 | 1.84 | |
Marshmallow | 17 | 2.10 | 1.05 |
Mentega | 16 | 2.07 | 1.04 |
Oat | 12.0 | 1.67 | |
Pecan | 3 | 1.75 | 0.88 |
Pistachio segar | 39 | 2.3 | |
Pistachio kering | 8 | 1.1 | |
Persik segar | 89 | 3.90 | 1.96 |
Plum segar | 75-78 | 3.52 | |
Susu (lemak 3.7%) | 87 | 3.85 | 1.94 |
Tepung terigu | 12-13.5 | 1.84 | |
Tin kering | 23 | 2.25 | 1.13 |
Tin segar | 78 | 3.63 | 1.82 |
Tomat matang | 94 | 4.03 | 2.02 |
Wortel | 86-90 | 3.88 | 1.95 |
Metode penentuan panas jenis dapat dilakukan dengan persamaan empiris, metode pencampuran dengan kalorimeter, metode guarded-plate, dan metode kalorimeter penskalaan diferensial.
Persamaan empiris
[sunting | sunting sumber]Dengan persamaan empiris Siebel[9] untuk temperatur di atas titik beku:
Untuk temperatur di bawah titik beku:
Dengan,
- adalah panas jenis (kJ/kgK) dan
- adalah kadar air bahan pertanian yang dinilai dalam bentuk rasio terhadap total massa bahan
Persamaan empiris lainnya yaitu persamaan Choi dan Okos.[6]:
dengan
- adalah fraksi massa air,
- adalah fraksi massa protein,
- adalah fraksi massa lemak,
- adalah fraksi massa karbohidrat, dan
- adalah fraksi massa abu
Persamaan lain dalam menentukan panas jenis bahan segar berdasarkan kadar air dan panas jenis bahan kering yang telah diketahui sebelumnya, yaitu:[10]
Di mana
- adalah panas jenis bahan kering (J/kgK),
- adalah panas jenis air (J/kgK), dan
- adalah kadar air basis basah bahan.
Persamaan empiris umum lainnya dapat ditemukan dengan variabel dan derajat error yang bervariasi, seperti persamaan Lamb dan Dominguez serta persamaan Heldman dan Singh.
Kalorimeter
[sunting | sunting sumber]Setiap kalorimeter memiliki konstanta yang bervariasi, yang biasanya dikalibrasi secara periodik atau sebelum dilakukan pengujian. Kalorimeter bekerja dengan menggunakan prinsip pencampuran panas yang sangat efisien di mana panas yang keluar dari sistem sangatlah sedikit. Panas yang dihasilkan didapatkan dari pengukuran fluida yang digunakan di dalam kalorimeter, biasanya air, sebelum dan sesudah pengujian, dikalibrasikan dengan konstanta kalorimeter.
Metode guarded-plate
[sunting | sunting sumber]Metode ini memanfaatkan plat logam yang mengelilingi dan memanaskan bahan pertanian.[11] Bahan pertanian dipanaskan dengan pemanasan listrik. Energi listrik yang dikeluarkan dibandingkan dengan perbedaan panas yang didapatkan bahan pertanian. Persamaam umum yang digunakan yaitu:
Dengan
- adalah panas yang dihasilkan (Joule, J),
- adalah panas jenis (kJ/kgK),
- adalah massa sampel (kg),
- adalah perubahan temperatur (K),
- adalah tegangan listrik (Volt),
- adalah kuat arus listrik (ampere),
- adalah waktu pemanasan (detik), dan
- adalah efisiensi pemanasan.
Konduktivitas panas
[sunting | sunting sumber]Konduktivitas panas adalah parameter yang menunjukan kemampuan bahan untuk mentransmisikan panas dari satu titik ke titik lainnya dari bahan tersebut dalam satuan waktu tertentu. Pengetahuan dari sifat ini bermanfaat untuk berbagai aplikasi, di antaranya untuk menentukan waktu sterilisasi dari proses pengalengan bahan pangan, menentukan besarnya energi yang digunakan dalam proses pemanasan atau pendinginan, dan menentukan lama pendinginan/pembekuan. Besarnya nilai konduktivitas panas dari suatu bahan bergantung pada struktur fisik, densitas, temperatur, komposisi kimia (air, protein, lemak, dan sebagainya), dan fase bahan (padat, cair, atau gas).
Secara umum, konduktivitas diilustrasikan dengan persamaan:
di mana,
- adalah panas yang diberikan (Joule),
- adalah waktu (detik),
- adalah temperatur (K),
- adalah panjang atau tebal (m),
- adalah luas penampang (m2), dan
- adalah konduktivitas termal (W/mK).
Berikut adalah tabel konduktivitas dan difusivitas termal beberapa bahan pertanian:
Bahan | Konduktivtas termal (W/mK) | Difusivitas termal (m2/jam) | Keterangan |
---|---|---|---|
Apel | 0.342 | 0.000399 | Kadar air 85% [12] |
Beras | 0.35 | kadar air 15%[13] | |
Daging ayam | 0480-0.488 | [14] | |
Daging babi, paha | 1.23 | kadar lemak 6%, kadar air 72%, temperatur -8oC tegak lurus dengan ruas otot[15] | |
Daging babi, paha | 1.41 | kadar lemak 6%, kadar air 72%, temperatur -8oC sejajar dengan ruas otot[15] | |
Daging babi strip loin | 0.388 | 0.000372 | [15] |
Daging sapi cincang | 0.452 | kadar lemak 3%, kadar air 74.6%[16] | |
Gandum, biji | 0.129 | 0.000307 | kadar air 10.3%[17] |
Grapefruit, daging buah | 0.462 | [18] | |
Grapefruit, kulit buah | 0.237 | [18] | |
Jagung pipil curah | 0.159 | 0.000326 | kadar air 14.7%[17] |
Jeruk Valencia, daging buah | 0.435 | [18] | |
Jeruk Valencia, kulit buah | 0.179 | [18] | |
Kacang merah | 0.102 | Kadar air 11.5%[19] | |
Kayu oak | 0.208 | 0.000380 | tegak lurus serat kayu[20] |
Kayu oak | 0.342 | 0.000640 | sejajar serat kayu[20] |
Kayu pinus | 0.104 | 0.000270 | tegak lurus serat kayu[20] |
Kayu pinus | 0.242 | 0.000622 | sejajar serat kayu[20] |
Kedelai curah | 0.106 | kadar air 11.2%[21] | |
Keju cheddar | 0.310 | kadar air 37%[22] | |
Keju mozarella | 0.370 | kadar air 45.4%[22] | |
Kentang | 0.648 | 0.000616 | [23] |
Krim | 0.310 | kadar lemak 47.5%, kadar air 48%[24] | |
Mentega | 0.210 | kadar air 16.5%[22] | |
Minyak jagung | 0.170 | [25] | |
Minyak kacang tanah | 0.167 | [26] | |
Persik segar | 0.581 | 0.000504 | kadar air 89%[14][27] |
Pistachio, tunggal | 0.112 | kadar air 10%[28] | |
Pistachio, curah | 0.030 | kadar air 10%[28] | |
Susu | 0.550-0.580 | Kadar lemak 3.7%, kadar air 83%[27] | |
Susu skim | 0.573 | kadar air 89.9%[24] | |
Susu skim bubuk | 0.258 | kadar air 4%[29] | |
Tin kering | 0.310 | 0.000306 | kadar air 40% [27] |
Referensi
[sunting | sunting sumber]- ^ Mohsenin, Nuri N. (1965). Terms, Definitions, and Measurements Related to Mechanical Harvesting of Selected Fruits and Vegetables. Pennsylvania State University.
- ^ Bonnesen, Tommy; Fenchel, Werner (1948). Theorie der konvexen Körper. ISBN 0-8284-0054-7.
- ^ a b Ogunlela, A. O. "Some Rheological and Frictional Properties of Soils and Agricultural Grains" (PDF). Diarsipkan dari versi asli (PDF) tanggal 2016-03-04. Diakses tanggal 19 September 2013.
- ^ Suastawa, I Nengah (2005). Sifat dan Fenomena Aero-Hidrodinamika. Institut Pertanian Bogor.
- ^ a b c d e f g h Gürsoy, S.; Güzel, E. (2010). "Determination of Physical Properties of Some Agricultural Grains" (PDF). Research Journal of Applied Sciences, Engineering, and Technology. Maxwell Scientific Organization. 2 (5): 492–498. ISSN 2040-7467. Diakses tanggal 18 September 2013.
- ^ a b c d e f Stroshine, Richard L. (1998). Physical Properties of Agricultural Material and Food Products (PDF). Purdue University. Diarsipkan dari versi asli (PDF) tanggal 2014-08-29. Diakses tanggal 19 September 2013.
- ^ Clover, Thomas J. Pocket Ref. Littleton, Colorado: Sequoia Publishing, Inc., 1998.
- ^ "Salinan arsip" (PDF). Diarsipkan dari versi asli (PDF) tanggal 2012-04-12. Diakses tanggal 2013-09-18.
- ^ Smith, P.G. (2011). Introduction to Food Process Engineering, 2nd ed. Springer. ISBN 978-1-4419-7661-1. Diakses tanggal 19 September 2013.
- ^ Jiřičková, Milena; Pavlík, Zbyšek; Černý, Robert (2006). "Thermal Properties of Biological Agricultural Materials" (PDF). Diakses tanggal 20 September 2013.
- ^ Zarr, Robert R.; Healy, William (2002). "Design Concepts for a New Guarded Hot Plate Apparatus for Use Over an Extended Temperature Range" (PDF). Insulation Materials; Testing and Applications. ASTM International. ISBN 0-8031-2898-3. Diakses tanggal 19 September 2013.
- ^ Bennett, A.H.; Chace, Jr, W.G.; Cubbedge, R.H. (1969). "Heat Transfer Properties and Characteristics of Appalachian Area "Red Delicious" Apples". ASHRAE Transactions. 75: 133–142.
- ^ Kameoka, T.; Odaka, S. (1986). Thermal Conductivity of Rough Rice. China Academic Publishers.
- ^ a b Sweat, V.E.; Haugh, C.G. (1974). "A Thermal COnductivity Probe for Small Food Samples". Transactions of ASAE. 17 (1): 56–58.
- ^ a b c Lentz, C.P. (1961). "Thermal Conductivity of Meats, Fats, Gelatin Gels, and Ice". Food Technology. 15 (5): 243–247.
- ^ Baghe-Khandan, M.S.; Okos, M.R.; Sweat, V.E. (1982). "The Thermal Conductivity of Beef as Affected by Temperature and Composition". Transactions of ASAE. 25 (4): 1118–1122.
- ^ a b Kazarian, E.A.; Hall, C.W. (1965). "Thermal Properties of Grain". Transactions of ASAE. 8 (1): 33–48.
- ^ a b c d Bennett, A.H.; Chace, Jr, W.G.; Cubbedge, R.H. (1964). "Thermal Conductivity of Valencia Orange and Marsh Grapefruit Rind and Juice Vesicles". ASHRAE Transactions. 70: 256–259.
- ^ Zuritz, C.A.; Sastry, S.K.; McCoy, S.C.; Murakami, E.G.; Blaisdell, J.L. (1989). "A Modified Fitch Device for Measuring the Thermal Conductivity of Small Food Particles". Transactions of ASAE. 32 (2): 711–718.
- ^ a b c d Kreith, F. (1967). Principles of Heat Transfer. Scranton, Pennsylvania: International Textbook Company.
- ^ Jasansky, A.; Bilanski, W.K. (1973). "Thermal Conductivity of Whole and Ground Soybeans". Transactions of ASAE. 16 (1): 100–103.
- ^ a b c Sweat, V.E.; Parmelee, C.E (1978). "Measurement of Thermal Conductivity of Dairy Products and Margarines". Journal of Food Process Engineering. 2: 187–197.
- ^ Chen, Der-Sheng. A New Method for HTST Sterilization of Particulate Foods, a Ph. D. Thesis. Purdue University, W. Lafayette, Indiana.
- ^ a b Spells, K.E. (1961). "Thermal COnductivity of Some Biological Fluids". Physics in Medicine and Biology. 5 (2): 139–153.
- ^ Lewis, M.J. (1987). Physical Properties of Foods and Food Processing Systems. Deerfield Beach, Florida: VCH Publishers.
- ^ Charm, S.E. (1971). The Fundamentals of Food Engineering. AVI Publishing Company.
- ^ a b c ASHRAE (1989). Thermal Properties of Foods, dalam ASHRAE Handbook of Fundamentals. American Society of Heating, Refrigerating, and Air COnditioning Engineers, Atlanta, Georgia.
- ^ a b Hsu, M.H.; Mannapperuma, J.D.; Singh, R.P. (1991). "Physical and Thermal Properties of Pistachios". Journal of Agricultural Engineering Research. 49: 311–321.
- ^ Farrall, A.W.; Chen, A.C.; Wang, P.Y.; Dhanak, A.M.; Hendrick, T.I.; Heldman, D.R. (1970). "Thermal Conductivity of Dry Milk in a Packed Bed". Transactions of ASAE. 13 (3): 391–394.
Bahan bacaan terkait
[sunting | sunting sumber]- Mohsenin, Nuri N. (1986). Physical Properties of Plant and Animal Materials: Structure, Physical Characteristics, and Mechanical Properties. Gordon and Breach. ISBN 0-677-21370-0.
- Albaloushi, Nabil S. "Rheological Behaviour of Tomato Fruits Affected by Various Loads Under Storage Conditions" (PDF). American Journal of Engineering Research. 02 (03): 36–43. ISSN 2320-0847. Diakses tanggal 19 September 2013.
- Sitkei, Gyorgy (1986). Mechanics of Agricultural Materials. Elsevier. ISBN 0-444-41940-3.
Pranala luar
[sunting | sunting sumber]Contoh penelitian
[sunting | sunting sumber]- Adhiguna, Rizky Tirta. "Karakteristik teknik proses kristalisasi kopi ginseng instan rendah kafein". repository.ipb.ac.id. Diakses tanggal 17 September 2013.
- Wahyuniningsih, Dewi Nurna. "Karakteristik Temperatur dan Aliran Larutan Nutrisi Tanaman Tomat (Lycopersicum Esculentum Mill) Pada Sistem Hidroponik Nutrient Film Technique (NFT)". repository.ipb.ac.id. Diakses tanggal 17 September 2013.