Isotop zirkonium
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Berat atom standar Ar°(Zr) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zirkonium (40Zr) yang terbentuk secara alami terdiri dari empat isotop stabil (salah satunya mungkin ditemukan menjadi radioaktif di masa depan), dan satu radioisotop berumur sangat panjang (96Zr), sebuah nuklida primordial yang meluruh melalui peluruhan beta ganda dengan waktu paruh 2,0×1019 tahun;[3] ia juga dapat mengalami peluruhan beta tunggal, yang belum teramati, tetapi nilai prediksi teoritis dari t1/2-nya adalah 2,4×1020 tahun.[4] Radioisotop paling stabil kedua adalah 93Zr, yang memiliki waktu paruh 1,53 juta tahun. Tiga puluh radioisotop lainnya telah diamati. Semuanya memiliki waktu paruh kurang dari satu hari kecuali 95Zr (64,02 hari), 88Zr (83,4 hari), dan 89Zr (78,41 jam). Mode peluruhan utama untuk isotop yang lebih ringan daripada 92Zr adalah penangkapan elektron, sedangkan untuk isotop yang lebih berat adalah peluruhan beta.
Daftar isotop
[sunting | sunting sumber]Nuklida [n 1] |
Z | N | Massa isotop (Da) [n 2][n 3] |
Waktu paruh [n 4][n 5] |
Mode peluruhan |
Isotop anak [n 6] |
Spin dan paritas [n 7][n 5] |
Kelimpahan alami (fraksi mol) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Energi eksitasi | Proporsi normal | Rentang variasi | |||||||||||||||||
78Zr | 40 | 38 | 77,95523(54)# | 50# mdtk [>170 ndtk] |
0+ | ||||||||||||||
79Zr | 40 | 39 | 78,94916(43)# | 56(30) mdtk | β+, p | 78Sr | 5/2+# | ||||||||||||
β+ | 79Y | ||||||||||||||||||
80Zr | 40 | 40 | 79,9404(16) | 4,6(6) dtk | β+ | 80Y | 0+ | ||||||||||||
81Zr | 40 | 41 | 80,93721(18) | 5,5(4) dtk | β+ (>99,9%) | 81Y | (3/2−)# | ||||||||||||
β+, p (<0,1%) | 80Sr | ||||||||||||||||||
82Zr | 40 | 42 | 81,93109(24)# | 32(5) dtk | β+ | 82Y | 0+ | ||||||||||||
83Zr | 40 | 43 | 82,92865(10) | 41,6(24) dtk | β+ (>99,9%) | 83Y | (1/2−)# | ||||||||||||
β+, p (<0,1%) | 82Sr | ||||||||||||||||||
84Zr | 40 | 44 | 83,92325(21)# | 25,9(7) mnt | β+ | 84Y | 0+ | ||||||||||||
85Zr | 40 | 45 | 84,92147(11) | 7,86(4) mnt | β+ | 85Y | 7/2+ | ||||||||||||
85mZr | 292,2(3) keV | 10,9(3) dtk | IT (92%) | 85Zr | (1/2−) | ||||||||||||||
β+ (8%) | 85Y | ||||||||||||||||||
86Zr | 40 | 46 | 85,91647(3) | 16,5(1) jam | β+ | 86Y | 0+ | ||||||||||||
87Zr | 40 | 47 | 86,914816(9) | 1,68(1) jam | β+ | 87Y | (9/2)+ | ||||||||||||
87mZr | 335,84(19) keV | 14,0(2) dtk | IT | 87Zr | (1/2)− | ||||||||||||||
88Zr[n 8] | 40 | 48 | 87,910227(11) | 83,4(3) hri | EC | 88Y | 0+ | ||||||||||||
89Zr | 40 | 49 | 88,908890(4) | 78,41(12) jam | β+ | 89Y | 9/2+ | ||||||||||||
89mZr | 587,82(10) keV | 4,161(17) mnt | IT (93,77%) | 89Zr | 1/2− | ||||||||||||||
β+ (6,23%) | 89Y | ||||||||||||||||||
90Zr[n 9] | 40 | 50 | 89,9047044(25) | Stabil | 0+ | 0,5145(40) | |||||||||||||
90m1Zr | 2319,000(10) keV | 809,2(20) mdtk | IT | 90Zr | 5- | ||||||||||||||
90m2Zr | 3589,419(16) keV | 131(4) ndtk | 8+ | ||||||||||||||||
91Zr[n 9] | 40 | 51 | 90,9056458(25) | Stabil | 5/2+ | 0,1122(5) | |||||||||||||
91mZr | 3167,3(4) keV | 4,35(14) μdtk | (21/2+) | ||||||||||||||||
92Zr[n 9] | 40 | 52 | 91,9050408(25) | Stabil | 0+ | 0,1715(8) | |||||||||||||
93Zr[n 10] | 40 | 53 | 92,9064760(25) | 1,53(10)×106 thn | β− (73%) | 93mNb | 5/2+ | ||||||||||||
β− (27%) | 93Nb | ||||||||||||||||||
94Zr[n 9] | 40 | 54 | 93,9063152(26) | Stabil Secara Pengamatan[n 11] | 0+ | 0,1738(28) | |||||||||||||
95Zr[n 9] | 40 | 55 | 94,9080426(26) | 64,032(6) hri | β− | 95Nb | 5/2+ | ||||||||||||
96Zr[n 12][n 9] | 40 | 56 | 95,9082734(30) | 20(4)×1018 thn | β−β−[n 13] | 96Mo | 0+ | 0,0280(9) | |||||||||||
97Zr | 40 | 57 | 96,9109531(30) | 16,744(11) jam | β− | 97mNb | 1/2+ | ||||||||||||
98Zr | 40 | 58 | 97,912735(21) | 30,7(4) dtk | β− | 98Nb | 0+ | ||||||||||||
99Zr | 40 | 59 | 98,916512(22) | 2,1(1) dtk | β− | 99mNb | 1/2+ | ||||||||||||
100Zr | 40 | 60 | 99,91776(4) | 7,1(4) dtk | β− | 100Nb | 0+ | ||||||||||||
101Zr | 40 | 61 | 100,92114(3) | 2,3(1) dtk | β− | 101Nb | 3/2+ | ||||||||||||
102Zr | 40 | 62 | 101,92298(5) | 2,9(2) dtk | β− | 102Nb | 0+ | ||||||||||||
103Zr | 40 | 63 | 102,92660(12) | 1,3(1) dtk | β− | 103Nb | (5/2−) | ||||||||||||
104Zr | 40 | 64 | 103,92878(43)# | 1,2(3) dtk | β− | 104Nb | 0+ | ||||||||||||
105Zr | 40 | 65 | 104,93305(43)# | 0,6(1) dtk | β− (>99,9%) | 105Nb | |||||||||||||
β−, n (<0,1%) | 104Nb | ||||||||||||||||||
106Zr | 40 | 66 | 105,93591(54)# | 200# mdtk [>300 ndtk] |
β− | 106Nb | 0+ | ||||||||||||
107Zr | 40 | 67 | 106,94075(32)# | 150# mdtk [>300 ndtk] |
β− | 107Nb | |||||||||||||
108Zr | 40 | 68 | 107,94396(64)# | 80# mdtk [>300 ndtk] |
β− | 108Nb | 0+ | ||||||||||||
109Zr | 40 | 69 | 108,94924(54)# | 60# mdtk [>300 ndtk] |
|||||||||||||||
110Zr | 40 | 70 | 109,95287(86)# | 30# mdtk [>300 ndtk] |
0+ | ||||||||||||||
111Zr[6] | 40 | 71 | |||||||||||||||||
112Zr[6] | 40 | 72 | 0+ | ||||||||||||||||
113Zr[7] | 40 | 73 | |||||||||||||||||
114Zr[8] | 40 | 74 | 0+ | ||||||||||||||||
Header & footer tabel ini: |
- ^ mZr – Isomer nuklir tereksitasi.
- ^ ( ) – Ketidakpastian (1σ) diberikan dalam bentuk ringkas dalam tanda kurung setelah digit terakhir yang sesuai.
- ^ # – Massa atom bertanda #: nilai dan ketidakpastian yang diperoleh bukan dari data eksperimen murni, tetapi setidaknya sebagian dari tren dari Permukaan Massa (trends from the Mass Surface, TMS).
- ^ Waktu paruh tebal – hampir stabil, waktu paruh lebih lama dari umur alam semesta.
- ^ a b # – Nilai yang ditandai # tidak murni berasal dari data eksperimen, tetapi setidaknya sebagian dari tren nuklida tetangga (trends of neighboring nuclides, TNN).
- ^ Simbol tebal sebagai anak – Produk anak stabil.
- ^ ( ) nilai spin – Menunjukkan spin dengan argumen penempatan yang lemah.
- ^ Penyerap neutron paling kuat kedua yang diketahui
- ^ a b c d e f Produk fisi
- ^ Produk fisi berumur panjang
- ^ Diyakini meluruh melalui β−β− menjadi 94Mo dengan waktu paruh lebih dari 1,1×1017 tahun
- ^ Radionuklida primordial
- ^ Diteorikan juga mengalami peluruhan β− menjadi 96Nb dengan waktu paruh parsial lebih besar dari 2,4×1019 tahun[5]
Zirkonium-88
[sunting | sunting sumber]Zirkonium-88 adalah sebuah radioisotop zirkonium dengan waktu paruh 83,4 hari. Pada Januari 2019, isotop ini ditemukan memiliki penampang tangkapan neutron sekitar 861.000 barn; ini beberapa kali lipat lebih besar dari yang diperkirakan, dan lebih besar dari nuklida lainnya kecuali 135Xe.[9]
Zirkonium-89
[sunting | sunting sumber]Zirkonium-89 adalah sebuah radioisotop zirkonium dengan waktu paruh 78,41 jam. Ia diproduksi oleh iradiasi proton dari 89Y alami. Foton gamanya yang paling menonjol memiliki energi 909 keV.
89Zr digunakan dalam aplikasi diagnostik khusus menggunakan pencitraan tomografi emisi positron[10], misalnya, dengan antibodi berlabel zirkonium-89 (immuno-PET).[11][12]
Zirkonium-93
[sunting | sunting sumber]Termal | Cepat | 14 MeV | |
---|---|---|---|
232Th | tidak fisil | 6,70 ± 0,40 | 5,58 ± 0,16 |
233U | 6,979 ± 0,098 | 6,94 ± 0,07 | 5,38 ± 0,32 |
235U | 6,346 ± 0,044 | 6,25 ± 0,04 | 5,19 ± 0,31 |
238U | tidak fisil | 4,913 ± 0,098 | 4,53 ± 0,13 |
239Pu | 3,80 ± 0,03 | 3,82 ± 0,03 | 3,0 ± 0,3 |
241Pu | 2,98 ± 0,04 | 2,98 ± 0,33 | ? |
Nuklida | t½ | Hasil | Q[a 1] | βγ |
---|---|---|---|---|
(Ma) | (%)[a 2] | (keV) | ||
99Tc | 0,211 | 6,1385 | 294 | β |
126Sn | 0,230 | 0,1084 | 4050[a 3] | βγ |
79Se | 0,327 | 0,0447 | 151 | β |
93Zr | 1,53 | 5,4575 | 91 | βγ |
135Cs | 2,3 | 6,9110[a 4] | 269 | β |
107Pd | 6,5 | 1,2499 | 33 | β |
129I | 15,7 | 0,8410 | 194 | βγ |
|
Zirkonium-93 adalah sebuah radioisotop zirkonium dengan waktu paruh 1,53 juta tahun, meluruh melalui emisi partikel beta berenergi rendah. 73% dari total peluruhan mengisi keadaan tereksitasi 93Nb, yang meluruh dengan waktu paruh 14 tahun dan sinar gama berenergi rendah ke keadaan dasar 93Nb yang stabil, sedangkan 27% sisa peluruhan langsung mengisi keadaan dasar.[14] Ia adalah salah satu dari hanya 7 produk fisi berumur panjang. Aktivitas spesifik yang rendah dan energi radiasi yang rendah membatasi bahaya radioaktif dari isotop ini.
Fisi nuklir menghasilkannya pada hasil fisi 6,3% (fisi neutron termal 235U), setara dengan produk fisi paling melimpah lainnya. Reaktor nuklir biasanya mengandung sejumlah besar zirkonium sebagai kelongsong batang bahan bakar (lihat Zircaloy), dan iradiasi neutron 92Zr juga menghasilkan beberapa 93Zr, meskipun hal ini dibatasi oleh penampang tangkapan neutron 92Zr yang rendah sebesar 0,22 barn. Memang salah satu alasan utama untuk menggunakan zirkonium dalam kelongsong batang bahan bakar adalah penampangnya yang rendah.
93Zr juga memiliki penampang tangkapan neutron rendah sebesar 0,7 barn.[15][16] Sebagian besar zirkonium fisi terdiri dari isotop lain; isotop lain dengan penampang penyerapan neutron yang signifikan adalah 91Zr dengan penampang sebesar 1,24 barn. 93adalah kandidat yang kurang menarik untuk dibuang melalui transmutasi nuklir dibandingkan dengan 99Tc dan 129I. Mobilitas dalam tanah relatif rendah, sehingga pembuangan secara geologis dapat menjadi solusi yang memadai. Sebagai alternatif, jika efek pada ekonomi neutron dari penampang 93Zr yang lebih tinggi dianggap dapat diterima, kelongsong yang diiradiasi dan produk fisi zirkonium (yang dicampur bersama dalam sebagian besar metode pemrosesan ulang nuklir saat ini) dapat digunakan untuk membentuk kelongsong Zircaloy baru. Setelah kelongsong berada di dalam reaktor, tingkat radioaktivitas yang relatif rendah dapat ditoleransi, tetapi transportasi dan manufaktur mungkin memerlukan tindakan pencegahan khusus.
Referensi
[sunting | sunting sumber]- ^ Pritychenko, Boris; Tretyak, V. "Adopted Double Beta Decay Data". National Nuclear Data Center. Diakses tanggal 6 Juli 2022.
- ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure Appl. Chem. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
- ^ "List of Adopted Double Beta (ββ) Decay Values". National Nuclear Data Center, Brookhaven National Laboratory.
- ^ H Heiskanen; M T Mustonen; J Suhonen (30 Maret 2007). "Theoretical half-life for beta decay of 96Zr". Journal of Physics G: Nuclear and Particle Physics. 34 (5): 837–843. doi:10.1088/0954-3899/34/5/005.
- ^ Finch, S.W.; Tornow, W. (2016). "Search for the β decay of 96Zr". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 806: 70–74. Bibcode:2016NIMPA.806...70F. doi:10.1016/j.nima.2015.09.098 .
- ^ a b Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; et al. (2010). "Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon". J. Phys. Soc. Jpn. Physical Society of Japan. 79 (7): 073201. doi:10.1143/JPSJ.79.073201 .
- ^ Shimizu, Yohei; et al. (2018). "Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345MeV=nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns". Journal of the Physical Society of Japan. 87: 014203. doi:10.7566/JPSJ.87.014203.
- ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103. doi:10.1103/PhysRevC.103.014614.
- ^ Shusterman, J.A.; Scielzo, N.D.; Thomas, K.J.; Norman, E.B.; Lapi, S.E.; Loveless, C.S.; Peters, N.J.; Robertson, J.D.; Shaughnessy, D.A.; Tonchev, A.P. (2019). "The surprisingly large neutron capture cross-section of 88Zr". Nature. 565 (7739): 328–330. Bibcode:2019Natur.565..328S. doi:10.1038/s41586-018-0838-z. OSTI 1512575. PMID 30617314.
- ^ Dilworth, Jonathan R.; Pascu, Sofia I. (2018). "The chemistry of PET imaging with zirconium-89". Chemical Society Reviews. 47 (8): 2554–2571. doi:10.1039/C7CS00014F. PMID 29557435.
- ^ Van Dongen, GA; Vosjan, MJ (August 2010). "Immuno-positron emission tomography: shedding light on clinical antibody therapy". Cancer Biotherapy and Radiopharmaceuticals. 25 (4): 375–85. doi:10.1089/cbr.2010.0812. PMID 20707716.
- ^ Untuk tabel peluruhan, lihat Maria Vosjan. "Zirconium-89 (89Zr)". Cyclotron.nl.
- ^ M. B. Chadwick et al, "ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at www-nds.iaea.org/exfor/endf.htm)
- ^ Cassette, P.; Chartier, F.; Isnard, H.; Fréchou, C.; Laszak, I.; Degros, J.P.; Bé, M.M.; Lépy, M.C.; Tartes, I. (2010). "Determination of 93Zr decay scheme and half-life". Applied Radiation and Isotopes. 68 (1): 122–130. doi:10.1016/j.apradiso.2009.08.011. PMID 19734052.
- ^ "ENDF/B-VII.1 Zr-93(n,g)". National Nuclear Data Center, Brookhaven National Laboratory. 22 Desember 2011. Diarsipkan dari versi asli tanggal 2009-07-20. Diakses tanggal 6 Juli 2022.
- ^ S. Nakamura; et al. (2007). "Thermal neutron capture cross-sections of Zirconium-91 and Zirconium-93 by prompt gamma-ray spectroscopy". Journal of Nuclear Science and Technology. 44 (1): 21–28. doi:10.1080/18811248.2007.9711252.
- Massa isotop dari:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Komposisi isotop dan massa atom standar dari:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683 .
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051 .
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 Oktober 2005.
- Data waktu paruh, spin, dan isomer dipilih dari sumber-sumber berikut.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Laboratorium Nasional Brookhaven.
- Holden, Norman E. (2004). "11. Table of the Isotopes". Dalam Lide, David R. CRC Handbook of Chemistry and Physics (edisi ke-85). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.