Paritas (matematika)

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Lompat ke: navigasi, cari

Paritas adalah istilah matematika yang menggambarkan penggolongan sifat dari sebuah bilangan bulat dalam satu dari dua golongan: genap atau ganjil. Sebuah bilangan bulat adalah ganjil jika bilangan tersebut 'tidak habis dibagi' dengan dua.[1] Sebagai contoh, 6 adalah genap karena tidak terdapat sisa ketika dibagi dengan 2. Sebaliknya, 3, 5, 7, 21 terdapat sisa 1 ketika dibagi dengan 2. Contoh dari bilangan genap termasuk −4, 0, 8, dan 1738. Secara khusus, nol adalah bilangan genap.[2] Beberapa contoh angka ganjil adalah −5, 3, 9, dan 73. Paritas tak berlaku pada bilangan tak bulat.

Definisi formal bilangan genap adalah adalah bilangan bulat dalam bentuk n = 2k, di mana k adalah bilangan bulat;[3] itu kemudian dapat dibuktikan bahwa bilangan ganjil adalah bilangan bulat dalam bentuk n = 2k + 1. Penggolongan ini hanya berlaku untuk bilangan bulat, dengan kata lain, bilangan tak bulat seperti 1/2, 4.201, atau tak hingga bukan bilangan genap maupun ganjil.

Himpunan dari bilangan genap dan ganjil dapat didefinisikan sebagai berikut:[4]

  • Genap
  • Ganjil

Sebuah bilangan (dalam hal ini bilangan bulat) yang dinyatakan dalam sistem bilangan desimal adalah ganjil atau genap tergantung dari apakah angka terakhirnya genap atau ganjil. Artinya, jika angka terakhirnya adalah 1, 3, 5, 7, atau 9, berarti bilangan tersebut ganjil; jika bukan, bilangan tersebut genap. Ide yang sama dapat berlaku dalam dasar genap manapun. Secara khusus, sebuah bilangan yang dinyatakan dalam sistem bilangan biner adalah ganjil jika angka terakhirnya adalah 1 dan genap jika angka terakhirnya adalah 0. Dalam dasar ganjil, sebuah bilangan adalah genap tergantung dari jumlah angka-angkanya – bilangan tersebut adalah genap jika dan hanya jika jumlah angkanya adalah genap.[5]

Referensi[sunting | sunting sumber]

  1. ^ A.V.Vijaya & Dora Rodriguez, Figuring Out Mathematics, Pearson Education India, pp. 20–21, ISBN 9788131703571 .
  2. ^ Bóna, Miklós (2011), A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory, World Scientific, p. 178, ISBN 9789814335232 .
  3. ^ Bassarear, Tom (2010), Mathematics for Elementary School Teachers, Cengage Learning, p. 198, ISBN 9780840054630 .
  4. ^ Sidebotham, Thomas H. (2003), The A to Z of Mathematics: A Basic Guide, John Wiley & Sons, p. 181, ISBN 9780471461630 .
  5. ^ Owen, Ruth L. (1992), "Divisibility in bases" (PDF), The Pentagon: A Mathematics Magazine for Students 51 (2): 17–20 .