Koefisien aktivitas

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Jump to navigation Jump to search

Koefisien aktivitas adalah suatu faktor yang digunakan dalam termodinamika untuk memperhitungkan penyimpangan dari perilaku ideal dalam campuran zat kimia.[1] Dalam suatu campuran ideal, interaksi mikroskopis antara masing-masing pasangan spesi kimia adalah sama (atau secara makroskopik setara, perubahan entalpi larutan dan variasi volume dalam pencampuran adalah nol) dan, sebagai hasilnya, sifat-sifat campuran dapat diekspresikan secara langsung dalam bentuk konsentrasi sederhana atau tekanan parsial dari zat yang ada, misalnya Hukum Raoult. Deviasi dari idealitas diakomodasikan dengan memodifikasi konsentrasi dengan koefisien aktivitas. Secara analog, ekspresi yang melibatkan gas dapat disesuaikan untuk non-idealitas dengan menskala tekanan parsial dengan koefisien fugasitas.

Konsep koefisien aktivitas terkait erat dengan aktivitas dalam kimia.

Definisi termodinamika[sunting | sunting sumber]

Potensial kimia, μB, dari suatu zat B dalam suatu campuran ideal cairan atau suatu larutan ideal dinyatakan oleh

di mana μoB adalah suatu potensial kimia dari suatu zat murni dan xB adalah fraksi mol zat dalam campuran.

Hal ini digeneralisasi untuk memasukkan perilaku non-ideal dengan menuliskan

di mana aB adalah aktivitas zat dalam campuran dengan

di mana γB adalah koefisien aktivitas, yang bergantung pada xB. Karena γB mendekati 1, zat tersebut berperilaku selayaknya ideal. Misalnya, jika γB ≈ 1, maka Hukum Raoult adalah akurat. Untuk γB > 1 dan γB < 1, zat B menunjukkan penyimpangan positif dan negatif dari Hukum Raoult, berturut-turut. Suatu penyimpangan positif menyiratkan bahwa zat B lebih mudah menguap.

Dalam banyak kasus, karena xB menuju ke nol, koefisien aktivitas zat B mendekati konstan; hubungan ini merupakan Hukum Henry bagi pelarut. Hubungan ini saling terkait satu sama lain melalui persamaan Gibbs–Duhem.[2] Perlu dicatat bahwa koefisien aktivitas umum adalah tidak berdimensi.

Secara detail: Hukum Raoult menyatakan bahwa tekanan parsial komponen B terkait dengan tekanan uap (tekanan saturasi) dan fraksi molnya xB dalam fasa cair,

dengan konvensi Dengan kata lain: Cairan murni mewakili kasus ideal.

Pada pengenceran tak terbatas, koefisien aktivitas mendekati nilai batas, γB. Dibandingkan dengan hukum Henry,

memberikan

Dengan kata lain: Senyawa ini menunjukkan perilaku nonideal dalam kasus encer.

Definisi di atas dari koefisien aktivitas tidak praktis jika senyawa tidak ada sebagai cairan murni. Ini sering terjadi untuk elektrolit atau senyawa biokimia. Dalam kasus seperti itu, definisi yang berbeda digunakan yang menganggap pengenceran tak terbatas sebagai keadaan ideal:

dengan dan

Simbol telah digunakan di sini untuk membedakan antara dua jenis koefisien aktivitas. Biasanya dihilangkan, karena jelas dari konteks yang dimaksudkan. Namun ada beberapa kasus di mana kedua jenis koefisien aktivitas diperlukan dan bahkan mungkin muncul dalam persamaan yang sama, misalnya, untuk larutan garam dalam campuran (air + alkohol). Ini terkadang merupakan sumber kesalahan.

Memodifikasi fraksi mol atau konsentrasi oleh koefisien aktivitas memberikan aktivitas efektif dari komponen, dan karenanya memungkinkan ekspresi seperti hukum Raoult dan konstanta kesetimbangan untuk diterapkan pada campuran ideal dan non-ideal.

Pengetahuan tentang koefisien aktivitas sangat penting dalam konteks elektrokimia karena perilaku larutan elektrolit sering jauh dari ideal, karena efek atmosfer ionik. Selain itu, mereka sangat penting dalam konteks kimia tanah karena volume rendah pelarut dan, akibatnya, konsentrasi elektrolit yang tinggi.[3]

Lihat pula[sunting | sunting sumber]

Referensi[sunting | sunting sumber]

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "Activity coefficient".
  2. ^ DeHoff, Robert (2006). Thermodynamics in materials science (edisi ke-2nd). Boca Raton, Fla.: CRC Taylor & Francis. hlm. 230–231. ISBN 9780849340659. 
  3. ^ Ibáñez, Jorge G.; Hernández Esparza, Margarita; Doría Serrano, Carmen; Singh, Mono Mohan (2007). Environmental Chemistry: Fundamentals. Springer. ISBN 978-0-387-26061-7. 

Pranala luar[sunting | sunting sumber]