Nukleosintesis: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Reindra (bicara | kontrib)
Nukleosintesis eksplosif
Reindra (bicara | kontrib)
Nukleosintesis eksplosif
Baris 45: Baris 45:


[[Proses rp]] melibatkan penyerapan cepat [[proton]] bebas juga neutron, tetapi perannya kurang begitu pasti.
[[Proses rp]] melibatkan penyerapan cepat [[proton]] bebas juga neutron, tetapi perannya kurang begitu pasti.
<!--
Explosive nucleosynthesis occurs too rapidly for radioactive decay to increase the number of neutrons, so that many abundant isotopes having equal even numbers of protons and neutrons are synthesized by the [[alpha process]] to produce nuclides which consist of whole numbers of helium nuclei, up to 16 (representing <sup>64</sup>Ge). Such nuclides are stable up to <sup>40</sup>Ca (made of 10 helium nuclei), but heavier nuclei with equal numbers of protons and neutrons are radioactive. However, the alpha process continues to influence production of [[isobar]]s of these nuclides, including at least the radioactive nuclides <sup>44</sup>Ti , <sup>48</sup>Cr , <sup>52</sup>Fe , <sup>56</sup>Ni , <sup>60</sup>Zn, and <sup>64</sup>Ge, most of which (save <sup>44</sup>Ti and <sup>60</sup>Zn) are created in such abundance as to decay after the explosion to create the most abundant stable isotope of the corresponding element at each atomic weight. Thus, the corresponding most common (abundant) isotopes of elements produced in this way are <sup>48</sup>Ti , <sup>52</sup>Cr , <sup>56</sup>Fe , and <sup>64</sup>Zn. Many such decays are accompanied by emission of gamma-ray lines capable of identifying the isotope that has just been created in the explosion.


Nukleosintesis eksplosif terjadi terlalu cepat untuk peluruhan radioaktif untuk menaikkan jumlah neutron, sehingga ada banyak kelimpahan isotop yang sama jumlah proton dan neutronnya disintesis oleh [[proses alfa]] untuk menghasilkan nuklida-nuklida yang mengandung seluruh bilangan inti atom helium, sampai 16 (mewakili <sup>64</sup>Ge). Nuklida-nuklida itu stabil hingga <sup>40</sup>Ca (terbuat dari 10 inti atom helium), tetapi inti yang lebih berat dengan jumlah proton dan neutron yang sama adalah radioaktif. Bagaimanapun, proses alfa berlanjut untuk memengaruhi penciptaan [[isobar]] nuklida-nuklida ini, sekurang-kurangnya termasuk nuklida radioaktif <sup>44</sup>Ti , <sup>48</sup>Cr, <sup>52</sup>Fe, <sup>56</sup>Ni, <sup>60</sup>Zn, dan <sup>64</sup>Ge, yang sebagian besar di antaranya (memelihara <sup>44</sup>Ti dan <sup>60</sup>Zn) diciptakan di dalam kelimpahan itu karena meluruh setelah ledakan untuk menciptakan isotop stabil yang paling melimpah dari unsur-unsur yang berpadanan pada tiap-tiap bobot atom. Dengan demikian, isotop-isotop berpadanan yang paling banyak ditemui (melimpah) dari unsur-unsur yang dihasilkan menurut cara ini adalah <sup>48</sup>Ti, <sup>52</sup>Cr, <sup>56</sup>Fe, dan <sup>64</sup>Zn. Banyak peluruhan itu diiringi oleh pelepasan deretan sinar-gama yang mampu mengenali isotop yang baru saja tercipta pada saat ledakan terjadi.
<!--
The most convincing proof of explosive nucleosynthesis in supernovae occurred in 1987 when gamma-ray lines were detected emerging from supernova 1987A. Gamma ray lines identifying <sup>56</sup>Co and <sup>57</sup>Co , whose radioactive halflives limit their age to about a year, proved that <sup>56</sup>Fe and <sup>57</sup>Fe were created by radioactive parents. This nuclear astronomy was predicted in 1969 <ref>{{cite journal | author=D. D. Clayton, S.A. Colgate, G.J. Fishman | title = Gamma ray lines from young supernova remnants | journal=The Astrophysical Journal | volume=155 | year=1969 | pages=75–82 | doi = 10.1086/149849+}}</ref> as a way to confirm explosive nucleosynthesis of the elements, and that prediction played an important role in the planning for NASA's successful Compton Gamma-Ray Observatory.
The most convincing proof of explosive nucleosynthesis in supernovae occurred in 1987 when gamma-ray lines were detected emerging from supernova 1987A. Gamma ray lines identifying <sup>56</sup>Co and <sup>57</sup>Co , whose radioactive halflives limit their age to about a year, proved that <sup>56</sup>Fe and <sup>57</sup>Fe were created by radioactive parents. This nuclear astronomy was predicted in 1969 <ref>{{cite journal | author=D. D. Clayton, S.A. Colgate, G.J. Fishman | title = Gamma ray lines from young supernova remnants | journal=The Astrophysical Journal | volume=155 | year=1969 | pages=75–82 | doi = 10.1086/149849+}}</ref> as a way to confirm explosive nucleosynthesis of the elements, and that prediction played an important role in the planning for NASA's successful Compton Gamma-Ray Observatory.



Revisi per 13 Mei 2010 03.59

Nukleosintesis adalah proses penciptaan inti-inti atom baru dari nukleon-nukleon (proton dan neutron) yang sudah ada sebelumnya. Diduga bahwa nukleon-nukleon primordial sendiri terbentuk dari plasma kuark-gluon dari Big Bang (Dentuman Besar) ketika ia mendingin di bawah dua triliun Kelvin. Beberapa menit kemudian, bermula hanya dengan proton dan neutron, terbentuklah inti-inti aton sampai litium dan berilium (kedua-duanya berbilangan massa 7), tetapi hanya berjumlah relatif kecil. Kemudian proses fusi secara esensial berhenti karena suhu dan kerapatan berkurang, karena semesta terus saja mengembang. Proses nukleosintesis primordial pertama ini dapat juga disebut sebagai nukleogenesis.

Nukleosintesis unsur-unsur yang lebih berat berikutnya memerlukan ledakan bintang-bintang berat dan supernova. Ini terjadi secara teoretis karena hidrogen dan helium dari Big Bang (mungkin dipengaruhi oleh konsentrasi materi gelap), mengembun menjadi bintang-bintang perdana 500 juta tahun setelah Big Bang. Unsur-unsur yang tercipta di dalam nukleosintesis bintang terentang pada nomor atom 6 (karbon) sampai sekurang-kurangnya 98 (kalifornium), yang sudah dideteksi dari spektra dari beberapa supernova. Sintesis unsur-unsur yang lebih berat ini muncul karena dua hal, yaitu fisi nuklir (termasuk penangkapan neutron ganda lambat dan cepat) atau fisi nuklir, kadang-kadang diikuti oleh peluruhan beta.

Sebaliknya, banyak proses bintang sebenarnya cenderung pada pemecahan deuterium dan isotop-isotop berilium, litium, dan boron yang ada di dalam bintang, setelah pembentukan primordial mereka pada saat Big Bang. Kuantitas unsur-unsur yang lebih ringan ini yang hadir di alam semesta sekarang kemudian dianggap terbentuk terutama melalui miliaran tahun sinar kosmos (terutama proton berenergi tinggi) yang memediasi pecahnya unsur-unsur yang lebih berat yang ada pada debu dan gas antarbintang.

Sejarah

Proses

Empat jenis utama nukleosintesis

Nukleosintesis Big Bang

Nukleosintesis bintang

Nukleosintesis eksplosif

Nukleosintesis eksplosif melibatkan nukleosintesis supernova, dan menghasilkan unsur-unsur yang lebih berat daripada besi oleh suatu hamburan reaksi nuklir yang intensif yang biasanya berlangsung hanya dalam beberapa detik pada peristiwa ledakan inti supernova. Di dalam lingkungan supernova yang penuh ledakan, unsur-unsur antara silikon dan nikel disintesis oleh fusi yang cepat. Juga di dalam supernova, proses lanjut nukleosintesis dapat terjadi, seperti proses r, di mana isotop-isotop yang paling banyak neutronnya dari unsur-unsur yang lebih berat daripada nikel dihasilkan oleh penyerapan yang cepat dari neutron bebas yang dilepaskan ketika ledakan terjadi. Kejadian ini bertanggung jawab atas gugus alami unsur-unsur radioaktif, seperti uranium dan torium, juga isotop-isotop yang paling banyak neutronnya dari unsur-unsur berat.

Proses rp melibatkan penyerapan cepat proton bebas juga neutron, tetapi perannya kurang begitu pasti.

Nukleosintesis eksplosif terjadi terlalu cepat untuk peluruhan radioaktif untuk menaikkan jumlah neutron, sehingga ada banyak kelimpahan isotop yang sama jumlah proton dan neutronnya disintesis oleh proses alfa untuk menghasilkan nuklida-nuklida yang mengandung seluruh bilangan inti atom helium, sampai 16 (mewakili 64Ge). Nuklida-nuklida itu stabil hingga 40Ca (terbuat dari 10 inti atom helium), tetapi inti yang lebih berat dengan jumlah proton dan neutron yang sama adalah radioaktif. Bagaimanapun, proses alfa berlanjut untuk memengaruhi penciptaan isobar nuklida-nuklida ini, sekurang-kurangnya termasuk nuklida radioaktif 44Ti , 48Cr, 52Fe, 56Ni, 60Zn, dan 64Ge, yang sebagian besar di antaranya (memelihara 44Ti dan 60Zn) diciptakan di dalam kelimpahan itu karena meluruh setelah ledakan untuk menciptakan isotop stabil yang paling melimpah dari unsur-unsur yang berpadanan pada tiap-tiap bobot atom. Dengan demikian, isotop-isotop berpadanan yang paling banyak ditemui (melimpah) dari unsur-unsur yang dihasilkan menurut cara ini adalah 48Ti, 52Cr, 56Fe, dan 64Zn. Banyak peluruhan itu diiringi oleh pelepasan deretan sinar-gama yang mampu mengenali isotop yang baru saja tercipta pada saat ledakan terjadi.

Spalasi sinar kosmos

Spalasi sinar kosmos menghasilkan beberapa unsur paling ringan yang hadir di alam semesta (meskipun bukan deuterium signifikan). Umum dikenal, spalasi diyakini bertanggung jawab atas dihasilkannya hampir semua 3He dan unsur-unsur litium, berilium, dan boron (beberapa litium-7 dan berilium-7 diduga telah dihasilkan pada saat Big Bang). Proses spalasi dihasilkan dari dampak sinar kosmos (terutama proton cepat) melawan medium antarbintang. Kejadian ini menyebabkan inti-inti atom karbon serpih, nitrogen, dan oksigen hadir di dalam sinar kosmos, dan juga unsur-unsur ini ditembak oleh proton di dalam sinar kosmos. Proses yang dihasilkan di dalam unsur-unsur ringan ini (Be, B, dan Li) hadir di dalam sinar kosmos pada proporsi yang lebih tinggi daripada mereka yang hadir di dalam atmosfer matahari, padahal inti-inti atom H dan He hadir di dalam sinar kosmos dengan kelimpahan yang menyamai pada keadaan primordial satu sama lain.

Berilium dan boron tidak dihasilkan secara signifikan di dalam proses fusi bintang, karena ketakstabilan 8Be yang dibentuk dari dua inti atom 4He mencegah reaksi 2-partikel sederhana membentuk unsur-unsur ini.

Bukti empirik

Teori-teori nukleosintesis diuji dengan menghitung kelimpahan isotop dan membandingkannya dengan hasil amatan. Kelimpahan isotop biasanya dihitung dengan menghitung laju transisi antara isotop-isotop di dalam sebuah jejaring. Seringkali perhitungan ini dapat disederhanakan sebagai sebuah kendali reaksi kunci laju reaksi-reaksi lainnya.

Lihat pula

Referensi

Bacaan tingkat lanjut

  • E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle, Synthesis of the Elements in Stars, Reviews of Modern Physics 29 (1957) 547 (artikel di dalam Arsip Daring Jurnal Physical Review (memerlukan pendaftaran)).
  • F. Hoyle, Monthly Notices Roy. Astron. Soc. 106, 366 (1946)
  • F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954)
  • D. D. Clayton, "Principles of Stellar Evolution and Nucleosynthesis", McGraw-Hill, 1968; University of Chicago Press, 1983, ISBN 0-226-10952-6
  • C. E. Rolfs, W. S. Rodney, Cauldrons in the Cosmos, Univ. of Chicago Press, 1988, ISBN 0-226-72457-3.
  • D. D. Clayton, "Handbook of Isotopes in the Cosmos", Cambridge University Press, 2003, ISBN 0 521 823811.