Nitrogen

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Lompat ke: navigasi, cari
Nitrogen,  7N
Liquidnitrogen.jpg
Nitrogen Spectra.jpg
Sifat umum
Nama, simbol nitrogen, N
Pengucapan /ˈntrɵən/ NYE-trə-jən
Penampilan gas/cairan/padatan tak berwarna
Nitrogen di tabel periodik
Hydrogen (diatomic nonmetal)
Helium (noble gas)
Litium (alkali metal)
Berilium (alkaline earth metal)
Boron (metalloid)
Karbon (polyatomic nonmetal)
Nitrogen (diatomic nonmetal)
Oksigen (diatomic nonmetal)
Fluor (diatomic nonmetal)
Neon (noble gas)
Natrium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (post-transition metal)
Silikon (metalloid)
Fosfor (polyatomic nonmetal)
Belerang (polyatomic nonmetal)
Klor (diatomic nonmetal)
Argon (noble gas)
Kalium (alkali metal)
Kalsium (alkaline earth metal)
Skandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Kromium (transition metal)
Mangan (transition metal)
Besi (transition metal)
Kobalt (transition metal)
Nikel (transition metal)
Tembaga (transition metal)
Seng (transition metal)
Galium (post-transition metal)
Germanium (metalloid)
Arsenik (metalloid)
Selenium (polyatomic nonmetal)
Bromin (diatomic nonmetal)
Kripton (noble gas)
Rubidium (alkali metal)
Stronsium (alkaline earth metal)
Itrium (transition metal)
Zirkonium (transition metal)
Niobium (transition metal)
Molibdenum (transition metal)
Teknesium (transition metal)
Rutenium (transition metal)
Rodium (transition metal)
Paladium (transition metal)
Perak (transition metal)
Kadmium (transition metal)
Indium (post-transition metal)
Timah (post-transition metal)
Antimon (metalloid)
Telurium (metalloid)
Yodium (diatomic nonmetal)
Xenon (noble gas)
Sesium (alkali metal)
Barium (alkaline earth metal)
Lantanum (lanthanide)
Serium (lanthanide)
Praseodimium (lanthanide)
Neodimium (lanthanide)
Prometium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Disprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Tulium (lanthanide)
Iterbium (lanthanide)
Lutesium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Renium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Emas (transition metal)
Raksa (transition metal)
Talium (post-transition metal)
Timbal (post-transition metal)
Bismut (post-transition metal)
Polonium (post-transition metal)
Astatin (metalloid)
Radon (noble gas)
Fransium (alkali metal)
Radium (alkaline earth metal)
Aktinium (actinide)
Torium (actinide)
Protaktinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Amerisium (actinide)
Kurium (actinide)
Berkelium (actinide)
Kalifornium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrensium (actinide)
Ruterfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hasium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Kopernisium (transition metal)
Nihonium (unknown chemical properties)
Flerovium (post-transition metal)
Moskovium (unknown chemical properties)
Livermorium (unknown chemical properties)
Tenesin (unknown chemical properties)
Oganeson (unknown chemical properties)
-

N

P
karbonnitrogenoksigen
Nomor atom (Z) 7
Golongan, blok golongan 15 (pniktogen), blok-p
Periode periode 2
Kategori unsur   nonlogam
Massa atom standar (±) (Ar) 14,0067(2)
Konfigurasi elektron 1s2 2s2 2p3
per kulit
2, 5
Sifat fisika
Fase gas
Titik lebur 63,15 K ​(-210,00 °C, ​-346,00 °F)
Titik didih 77,36 K ​(-195,79 °C, ​-320,33 °F)
Kepadatan pada sts (0 °C dan 101,325 kPa) 1,251 g/L
saat cair, pada t.d. 0,808 g/cm3
Titik tripel 63,1526 K, ​12,53 kPa
Titik kritis 126,19 K, 3,3978 MPa
Kalor peleburan (N2) 0,72 kJ/mol
Kalor penguapan (N2) 5,56 kJ/mol
Kapasitas kalor molar (N2)
29,124 J/(mol·K)
Tekanan uap
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 37 41 46 53 62 77
Sifat atom
Bilangan oksidasi 5, 4, 3, 2, 1, -1, -2, -3 ​oksida asam kuat
Elektronegativitas Skala Pauling: 3,04
Energi ionisasi
(artikel)
Jari-jari kovalen 71±1 pm
Jari-jari Van der Waals 155 pm
Lain-lain
Struktur kristal heksagon
Struktur kristal Hexagonal untuk nitrogen
Kecepatan suara (gas, 27 °C) 353 m/s
Kondusivitas termal 25,83×10−3 W/(m·K)
Arah magnet diamagnetik
Nomor CAS 7727-37-9
Sejarah
Penemuan D. Rutherford (1772)
Asal nama J. Chaptal (1790)
Isotop nitrogen terstabil
iso NA waktu paruh DM DE (MeV) DP
13N syn 9,965 min ε 2,220 13C
14N 99,634% N stabil dengan 7 neutron
15N 0,366% N stabil dengan 8 neutron
| referensi | di Wikidata

Nitrogen atau zat lemas adalah unsur kimia dalam tabel periodik yang memiliki lambang N dan nomor atom 7. Ini adalah pniktogen paling ringan pada temperatur kamar. Biasanya ditemukan sebagai gas tanpa warna, tanpa bau, tanpa rasa, dan merupakan gas diatomik, sangat sulit bereaksi dengan unsur atau senyawa lainnya. Dinamakan zat lemas karena zat ini bersifat malas, tidak aktif bereaksi dengan unsur lainnya. Nitrogen merupakan unsur umum di alam semesta, diperkirakan merupakan unsur ketujuh dari total kelimpahan di Bima Sakti dan Tata Surya. Di Bumi, unsur ini membentuk sekitar 78% dari atmosfer bumi dan dengan demikian merupakan unsur bebas yang paling melimpah. Unsur nitrogen ditemukan sebagai komponen yang dapat dipisahkan dari udara, oleh fisikawan Skotlandia Daniel Rutherford, pada tahun 1772.

Selain mengisi 78,08 persen atmosfer Bumi, nitrogen terdapat pula dalam banyak jaringan hidup. Zat lemas membentuk banyak senyawa penting seperti asam amino, amonia, asam nitrat, dan sianida.

Sifat-sifat penting[sunting | sunting sumber]

Nitrogen adalah zat non logam, dengan elektronegatifitas 3.0. Mempunyai 5 elektron di kulit terluarnya. Ikatan rangkap tiga dalam molekul gas nitrogen (N2) adalah yang terkuat. Nitrogen mengembun pada suhu 77K (-196oC) pada tekanan atmosfer, dan membeku pada suhu 63K (-210oC).

Sejarah[sunting | sunting sumber]

Nitrogen (bahasa Latin: Nitrum, bahasa Yunani: Nitron berarti "soda asli", "gen", "pembentukan") secara resmi ditemukan oleh Daniel Rutherford pada 1772, yang menyebutnya udara beracun atau udara tetap. Pengetahuan bahwa terdapat pecahan udara yang tidak membantu dalam pembakaran telah diketahui oleh ahli kimia sejak akhir abad ke-18 lagi. Nitrogen juga dikaji pada masa yang lebih kurang sama oleh Carl Wilhelm Scheele, Henry Cavendish, dan Joseph Priestley, yang menyebutnya sebagai udara terbakar atau udara telah flogistat. Gas nitrogen adalah cukup lemas sehingga dinamakan oleh Antoine Lavoisier sebagai azote, daripada perkataan Yunani αζωτος yang bermaksud "tak bernyawa". Istilah tersebut telah menjadi nama kepada nitrogen dalam perkataan Perancis dan kemudiannya berkembang ke bahasa-bahasa lain.

Senyawa nitrogen diketahui sejak Zaman Pertengahan Eropa. Ahli alkimia mengetahui asam nitrat sebagai aqua fortis. Campuran asam klorida dan asam nitrat dinamakan akua regia, yang diakui karena kemampuannya untuk melarutkan emas. Kegunaan senyawa nitrogen dalam bidang pertanian, dan perusahaan pada awalnya ialah dalam bentuk kalium nitrat,terutama dalam penghasilan serbuk peledak (garam mesiu), dan kemudiannya, sebagai baja dan juga stok makanan ternak kimia.

Senyawa[sunting | sunting sumber]

Hidrida utama nitrogen ialah amonia (NH3) walaupun hidrazina (N2H4) juga banyak ditemukan. Amonia bersifat basa dan terlarut sebagian dalam air membentuk ion ammonium (NH4+). Amonia cair sebenarnya sedikit amfiprotik dan membentuk ion ammonium, dan amida (NH2-); keduanya dikenal sebagai garam amida, dan nitrida (N3-), tetapi terurai dalam air.

Gugus bebas amonia dengan atom hidrogen tunggal atau ganda dinamakan amina. Rantai, cincin atau struktur hidrida nitrogen yang lebih besar juga diketahui tetapi tak stabil.

Peranan biologi[sunting | sunting sumber]

Nitrogen merupakan unsur kunci dalam asam amino dan asam nukleat, dan ini menjadikan nitrogen penting bagi semua kehidupan. Protein disusun dari asam-asam amino, sementara asam nukleat menjadi salah satu komponen pembentuk DNA dan RNA.

Polong-polongan, seperti kedelai, mampu menangkap nitrogen secara langsung dari atmosfer karena bersimbiosis dengan bakteri bintil akar.

Isotop[sunting | sunting sumber]

Ada 2 isotop Nitrogen yang stabil yaitu: 14N dan 15N. Isotop yang paling banyak adalah 14N (99.634%), yang dihasilkan dalam bintang-bintang, dan yang selebihnya adalah 15N. Di antara sepuluh isotop yang dihasilkan secara sintetik, 1N mempunyai paruh waktu selama 9 menit, dan yang selebihnya sama atau lebih kecil dari itu.

Peringatan[sunting | sunting sumber]

Limbah baja nitrat merupakan penyebab utama pencemaran air sungai, dan air bawah tanah. Senyawa yang mengandung siano(-CN) menghasilkan garam yang sangat beracun, dan bisa membawa kematian pada hewan, dan manusia.

Nitrogen dalam perindustrian[sunting | sunting sumber]

Peranan nitrogen dalam perindustrian relatif besar, dan industri yang menggunakan unsur dasar nitrogen sebagai bahan baku utamanya disebut pula sebagai industri nitrogen. Nitrogen yang berasal dari udara merupakan komponen utama dalam pembuatan pupuk dan telah banyak membantu intensifikasi produksi bahan makanan di seluruh dunia. Pengembangan proses fiksasi nitrogen telah berhasil memperjelas berbagai asas proses kimia, dan proses tekanan tinggi serta telah menyumbang banyak perkembangan di bidang teknik kimia.

Sebelum adanya proses fiksasi (pengikatan) nitrogen secara sintetik, sumber utama nitogen untuk keperluan pertanian hanyalah bahan limbah, dan kotoran hewan, hasil dekomposisi dari bahan-bahan tersebut serta amonium sulfat yang didapatkan dari hasil sampingan pembuatan kokas dari batubara. Bahan-bahan seperti ini tidak mudah ditangani belum lagi jumlahnya yang tidak mencukupi semua kebutuhan yang diperlukan.

Salpeter Chili, salpeter dari air kencing hewan, dan manusia, dan amonia yang dikumpulkan dari pembuatan kokas menjadi penting belakangan ini tetapi akhirnya disisihkan lagi oleh amonia sintetik, dan nitrat. Amonia merupakan bahan dasar bagi pembuatan hampir semua jenis produk yang memakai nitrogen.

Gambaran umum[sunting | sunting sumber]

Sejarah[sunting | sunting sumber]

Catatan pertama mengenai usaha pembentukan senyawa nitrogen sintetis pertama dilakukan oleh Priestley dan Cavendish yang melewatkan percikan bunga api listrik di dalam bejana berisi udara bebas, dan akhirnya mendapatkan nitrat setelah sebelumnya melarutkan oksida yang terbentuk dalam reaksi dengan alkali. Penemuan ini cukup besar di masanya, mengingat kebutuhan senyawa nitrogen untuk pupuk yang besar namun sayangnya alam tidak cukup untuk memenuhinya. Karena itu, adanya senyawa nitrogen yang dapat dibuat di dalam laboratorium memberikan peluang baru.

Namun usaha komersial dari proses ini tidak berjalan dengan mudah mengingat banyaknya kebutuhan energi yang besar, dan efisiensinya yang terlalu rendah. Setelah ini banyak proses terus dikembangkan untuk perbaikan. Nitrogen pernah juga diikatkan dari udara sebagai kalsium sianida, namun tetap saja proses ini masih terlalu mahal. Proses-proses lain juga tidak terlalu berbeda, seperti pengolahan termal atas campuran oksida nitrogen (NOX), pembentukan sianida dari berbagai sumber nitrogen, pembentukan aluminium nitrida, dekomposisi amonia, dan sebagainya. Semuanya tidak menunjukkan harapan untuk dapat dikomersialkan walaupun secara teknis semua proses ini terbukti dapat dilaksanakan.

Sampai akhirnya Haber dan Nernst melakukan penelitian yang menyeluruh tentang keseimbangan antara nitogen, dan hidrogen di bawah tekanan sehingga membentuk amonia. Dari penelitian ini pula didapatkan beberapa katalis yang sesuai. Reaksi ini sebenarnya membutuhkan tekanan sistem yang tinggi, tetapi pada masa itu peralatan yang memadai belum ada, dan mereka merancang peralatan baru untuk reaksi tekanan tinggi (salah satu sumbangan dari perkembangan industri baru ini).

Bukan peralatan tekanan tinggi saja yang akhirnya tercipta karena dipicu oleh tuntutan industri nitrogen ini. Haber, dan Bosch, ilmuwan lain yang bekerjasama dengan Haber, juga mengembangkan proses yang lebih efisien dalam usahanya menghasilkan hidrogen, dan nitrogen murni. Proses sebelumnya adalah dengan elektrolisis air untuk menghasilkan hidrogen murni, dan distilasi udara cair untuk mendapatkan nitrogen murni yang kedua usaha ini masih terlalu mahal untuk diaplikasikan dalam mengkomersialkan proses baru pembuatan amonia mereka. Maka mereka menciptakan proses lain yang lebih murah.

Usaha bersama mereka mencapai kesuksesan pada tahun 1913 ketika berhasil membentuk amonia pada tekanan tinggi. Proses baru ini masih memerlukan banyak energi namun pengembangan lebih lanjut terus dilakukan. Dengan cepat proses ini berkembang melebihi proses sintetis senyawa nitrogen lainnya, dan menjadi dominan sampai sekarang dengan perbaikan-perbaikan besar masih berlanjut.

Bahan baku[sunting | sunting sumber]

Bahan baku utama yang banyak digunakan dalam industri nitrogen adalah udara, air, hidrokarbon dan tenaga listrik. Batubara dapat menggantikan hidrokarbon namun membutuhkan penanganan yang lebih rumit, sehingga proses menjadi kompleks, dan berakibat pada mahalnya biaya operasi.

Penggunaan dan ekonomi[sunting | sunting sumber]

Dari semua macam senyawa nitrogen, amonia adalah senyawa nitogen yang paling penting. Amonia merupakan salah satu senyawa dasar nitogen yang dapat direaksikan dengan berbagai senyawa yang berbeda selain proses pembuatan amonia yang sudah terbukti ekonomis, dan efisiensinya yang sampai sekarang terus ditingkatkan. Sebagian besar amonia diperoleh dengan cara pembuatan sintetis di pabrik, dan sebagian kecilnya diperoleh dari hasil samping suatu reaksi.

Penggunaan gas amonia bermacam-macam ada yang langsung digunakan sebagai pupuk, pembuatan pulp untuk kertas, pembuatan garam nitrat dan asam nitrat, berbagai jenis bahan peledak, pembuatan senyawa nitro dan berbagai jenis refrigeran. Dari gas ini juga dapat dibuat urea, hidrazina dan hidroksilamina.

Gas amonia banyak juga yang langsung digunakan sebagai pupuk, namun jumlahnya masih terlalu kecil untuk menghasilkan jumlah panen yang maksimum. Maka dari itu diciptakan pupuk campuran, yaitu pupuk yang mengandung tiga unsur penting untuk tumbuhan (N + P2O5 + K2O). Pemakaian yang intensif diharapkan akan menguntungkan semua pihak.

Amonia Sintetik[sunting | sunting sumber]

Penggunaan dan ekonomi[sunting | sunting sumber]

Amonia kualitas komersial meliputi NH3 cair murni, dan yang larut dalam air dengan konsentrasi 28 %NH3. Transportasi bahan ini sebagian besar memakai tangki silinder, dan sebagian lagi ada yang langsung disalurkan melalui pipa. Belakangan ini pemakaian pipa mulai berkembang pesat, terutama dari pusat produksi ke pusat distribusi yang keseluruhan panjangnya bisa mencapai 1.000 Km[1].

Reaksi dan keseimbangan[sunting | sunting sumber]

2N2(g) + 3H2(g) ==> 2NH3(g)

Karena molekul produk amonia mempunyai volum yang lebih kecil dari jumlah volum reaktan maka keseimbangan akan bertambah ke arah amonia dengan peningkatan tekanan. Peningkatan suhu reaksi menyebabkan memberikan efek yang sebaliknya terhadap keseimbangan karena reaksi bersifat eksotermis, namun memberikan efek positif terhadap laju reaksi. Maka dari itu perlu dihitung suhu optimal agar menghasilkan keuntungan yang maksimum.

Laju dan katalis reaksi[sunting | sunting sumber]

Agar peralatan dapat dibuat sekompak mungkin, maka perlu dipikirkan pemberian katalis agar laju reaksi dapat berjalan dengan cepat karena reaksi hidrogen, dan nitrogen berjalan sangat lambat.

Banyak jenis katalis yang digunakan secara komersial di berbagai pabrik, namun yang umum digunakan adalah katalis besi dengan tambahan banyak promotor seperti oksida aluminium, zirkonium, silikon dengan konsentrasi 3 % atau oksida kalium sekitar 1 %.

Prosedur pembuatan[sunting | sunting sumber]

Pembuatan amonia terdiri dari enam tahap[2][3][4]:

  1. Pembuatan gas-gas pereaksi
  2. Pemurnian
  3. Kompresi
  4. Reaksi katalitik
  5. Pengumpulan amonia yang terbentuk
  6. Resirkulasi

Biaya pembuatan amonia sangat tergantung pada tekanan yang digunakan, suhu, dan katalis selain bahan yang digunakan.

Amonium nitrat[sunting | sunting sumber]

amonium nitrat atau dengan sebutan NH4NO3 (ammonium nitrate) dapat dibuat dengan amonia, dan asam nitrat sebagai bahan bakunya. proses pembuatan amonium nitrat pun ada beberapa macam antara lain : 1. Proses Priling 2. Proses Kristalisasi, dan 3. Proses Stengel atau Granulasi

dari ke-tiga tahap tersebut, adalah proses kristalisasilah yang paling mudah; prosesnya; bahan baku amonia, dan asam nitrat masuk ke reaktor dengan bentuk fasenya adalah amonia masih berupa gas, dan asam nitrat telah berupa fase liquid. dari reaktor semua bahan baku tersebut di lanjutkan ke evaporator lalu dikristalizer, dan akhirnya di separator, dan jadilah amonium nitrat.

Referensi[sunting | sunting sumber]

  1. ^ Appl, P.: A Brief History of Ammonia Production from Early to the Present, Nitrogen Mar./Apr., 1976
  2. ^ Brykowski, F.J. (ed.):Ammonia and Synthesis Gas, Noyes, Park Ridge, N.J., 1981.
  3. ^ Strelzoff, S.: Technology and Manufacture of Ammonia, Wiley-Interscience, New York, 1981.
  4. ^ Varicini, C.A. and D. J. Borgars: Synthesis of Ammonia, CRC.