Karbon nanotube

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Rotasi karbon tabung nano berdinding tunggal berliku-liku

Carbon NanoTube/Tabung Karbon Nano (CNTs) adalah komposisi senyawa karbon yang berbentuk tabung berukuran nano. Dibentuk dengan rasio perbandingan panjang:lebar ialah 132.000.000:1,[1] lebih besar dibanding material lainnya. Molekul silinder karbon ini memiliki sifat yang tidak biasa dan sangat bermanfaat dibidang nanoteknologi,elektronik,optik dan berbagai bidang ilmu dan teknologi material. Karena mereka memiliki konduktifitas termal aupun sifat mekanis dan listrik yang dimiliki, karbon nanotube dapat diaplikasikan untuk berbagai macam bahan struktur.

Nanotube termasuk salah satu anggota struktural fullerene. Nama nanotube berasal dari bentuk mereka yang panjang dan berlubang dengan dinding yang dibentuk oleh lembaran satu atom tebal karbon,disebut graphene. Lembaran karbon ini digulung pada diskrit dan sudut tertentu. Nanotube dikategorikan sebagai nanotube berdinding tunggal atau SWNTs dan nanotube berdinding multi (MWNTs). Nanotube individu secara alami akan menyesuaikan diri membentuk tali yang dipertahankan oleh gaya van der Waals. Lebih spesifiknya berupa susunan-pi.

Dalam terapan Kimia Kuantum khususnya,hibridisasi orbital ialah penggambaran terbaik dari ikatan kimia di dalam nanotube. Ikatan kimia dari nanotube terbentuk dari ikatan sp2 mirip dengan grafit. Ikatan ini lebih kuat dibanding ikatan sp3 yang ditemukan di alkana dan berlian. Membuat nanotube memiliki sifat kekuat yang unik.

Tipe karbon nanotube dan strukturnya[sunting | sunting sumber]

Pengantar[sunting | sunting sumber]

Tidak ada konsensus tentang beberapa istilah yang menjelaskan karbon nanotube ialah literatur ilmiah: baik itu dinding "-wall" dan berdinding "-walled" selalu digunakan dengan kombinasi single, double, atau multi. Dan huruf C sering dihilangkan dalam singkatan, contohnya: multi-walled carbon nanotube (MWNT).

Berdinding tunggal[sunting | sunting sumber]

Skema penamaan nanotube (n,m) dapat dianggap sebagai vektor (Ch) dalam lembar graphene yang tak terbatas yang menjelaskan cara menggulung lembar graphene untuk membuat nanotube. T dinotasikan sebagai axis, a1 dan a2 ialah unit vektor graphene dalam ruang nyata.
sebuah citra mikroskop scanning tunneling karbon nanotube berdinding tunggal
Sebuah citra mikroskop transmisi elektron karbon nanotube berdinding tunggal

Kebanyakan nanotube berdinding tunggal (SWNT) mempunyai diameter mencapai 1 nanometer dengan lebar tabung dapat mencapai jutaan kalinya. Struktur dari SWNT dapat dikonsepkan dengan membengkokan grafit selebar satu atom yang disebut graphene hingga membentuk silinder. Cara lembaran graphene menggulung dapat dipresentasikan oleh sepasang indeks (n,m). Integral dari n dan m menunjukan jumlah vektor satuan sepanjang dua arah dalam sturuktur kisi sarang lebah kristal graphene. Jika m = 0, nanotube disebut sebagai nanotube Zig-zag, dan jika n = m, disebut sebagai nanotube armchair. Sebaliknya disebut Chiral. Diameter nanotube yang ideal dapat dihitung dari indeks (n,m) sebagai berikut


 d = \frac{a}{\pi} \sqrt{(n^2 + nm + m^2)}=78.3 \sqrt{((n+m)^2-nm)} \rm pm,


dimana a = 0.246 nm.

SWNT sangat penting dari berbagai nanotube karena sebagian besar sifat mereka berubah secara signifikan dengan nilai (n, m) dan ketergantungan ini bersifat non-monoton. Khususnya, Rentang Energi nanotube dapat bervariasi dari nol sampai sekitar 2 eV dan konduktivitas listrik mereka dapat menunjukkan perilaku logam atau semikonduktor. Nanotube berdinding tunggal ini kemungkinan untuk meminiatur elektronik.satu kegunaan penting dari SWNT ialah pengembangan pertama antarmolekul pertama efek medan transistor (FET). Gerbang logika antar molekul menggunakan SWNT FETs yang dibuat tahun 2001.[2]

Berdinding ganda[sunting | sunting sumber]

Nanotube berdinding ganda (MWNT) terdiri dari beberapa lapis (tabung konsentris) graphene. Terdapat 2 jenis model yang dapat mendeskripsikan struktur dari nanotube berdinding banyak. Dalam model berputar Ru nanotube berdinding banyak model Doll. Lebar grafit diatur dalam silinder konsentris. Dalam model Parchment, satu lembar grafit yang tergulung disekitar itu sendiri menyerupai gulungan perkamen atau gulungan koran. Jarak lapisan terdalam di dalam nanotube berdinding banyak berjarak dekat diantara lapisan graphene didalam grafit,sekitar 3.4 Å.

Torus[sunting | sunting sumber]

Secara teori, nanotorus ialah karbon nanotube yang menggulung membentuk bentuk donat. Nanotori diperkirakan memiliki berbagai macam sifat unik, seperti memiliki momen magnetik 1000 kali lebih besar dibanding perkiraan sebelumnya untuk radius tertentu.[3] Seperti sifat momen magnetik, kesetimbangan thermal,dll.[3][4]

Nanobud[sunting | sunting sumber]

Karbon Nanobud ialah material terbaru yang dibentuk oleh Karbon Nanotube dan fulerena. Material hibrida ini memiliki sifat yang berguna baik bagi fullerene maupun nanotube. Terutama, nanobud telah dibuat untuk menjadi medan emitter yang efisien.

Peapod[sunting | sunting sumber]

Karbon peapod [5][6] adalah bahan karbon hybrid baru yang merangkap fullerene dalam nanotube karbon. Hal ini dapat memiliki sifat magnet yang menarik dengan pemanasan dan penyinaran. Hal ini juga dapat diterapkan sebagai osilator selama investigasi teoritis dan prediksi.[7][8]

Karbon Nanotube Ekstrim[sunting | sunting sumber]

Cycloparafenilin

Pengamatan nanotube karbon terpanjang tumbuh sejauh ini lebih dari 1/2 m (Panjang: 550 mm) disampaikan pada 2013.[9] nanotube ini ditumbuhkan pada substrat Si menggunakan metode deposisi uap kimia yang ditingkatkan (CVD) dan mewakili susunan elektrik yang seragam pada nanotube karbon berdinding tunggal.[1]

Tabung karbon nano terpendek adalah senyawa organik cycloparafenilin yang disintesis pada tahun 2009.[10][11]

Karbon nanotube tertipis ialah armchair (2,2) CNT dengan diametrnya 3 Å. Nanotube ini ditumbuhkan di dalam nanotube karbon berdinding multi. Merupan jenis karbon nanotube yang dilakukan dengan kombinasi mikroskop elektron transmisi beresolusi tinggi (HRTEM), spektroskopi raman, kalkulasi teori kerapatan fungsional (DFT).[12]

Tertipis berdiri bebas karbon nanotube berdinding tunggal adalah sekitar 4,3 Å diameter. Para peneliti mengemukakan bahwa karbon nanotube itu dapat berupa (5,1) atau (4,2) SWCNT, tapi jenis dari karbon nanotube tetap dipertanyakan.[13] (3,3), (4,3) dan (5,1) nanotube karbon (semua diameter 4 Å ) yang dengan jelas diidentifikasi menggunakan penyimpangan-dikoreksi resolusi tinggi mikroskop elektron transmisi dalam CNT berdinding ganda.[14]

Kepadatan tertinggi CNT dicapai pada tahun 2013, tumbuh pada permukaan tembaga berlapis titanium konduktif yang dilapisi dengan co-katalis kobalt dan molibdenum pada lebih rendah dari suhu 450 °C. Ketinggian tabung rata-rata 0,38 m dan kepadatan massa 1,6 g cm-3. Materi yang menunjukkan konduktivitas ohmik (resistensi terendah ~ 22 kΩ)[15][16]

Lihat juga[sunting | sunting sumber]


Referensi[sunting | sunting sumber]

  1. ^ a b Wang, X.; Li, Qunqing; Xie, Jing; Jin, Zhong; Wang, Jinyong; Li, Yan; Jiang, Kaili; Fan, Shoushan (2009). "Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates". Nano Letters 9 (9): 3137–3141. Bibcode:2009NanoL...9.3137W. doi:10.1021/nl901260b. PMID 19650638. 
  2. ^ Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K.; Tersoff, J.; Avouris, Ph. (2001). "Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes". Phys. Rev. Lett. 87 (25): 256805. Bibcode:2001PhRvL..87y6805M. doi:10.1103/PhysRevLett.87.256805. PMID 11736597. 
  3. ^ a b Liu, L.; Guo, G.; Jayanthi, C.; Wu, S. (2002). "Colossal Paramagnetic Moments in Metallic Carbon Nanotori". Phys. Rev. Lett. 88 (21): 217206. Bibcode:2002PhRvL..88u7206L. doi:10.1103/PhysRevLett.88.217206. PMID 12059501. 
  4. ^ Huhtala, M.; Kuronen, A.; Kaski, K. (2002). "Carbon nanotube structures: Molecular dynamics simulation at realistic limit". Computer Physics Communications 146: 30. Bibcode:2002CoPhC.146...30H. doi:10.1016/S0010-4655(02)00432-0. 
  5. ^ Smith, Brian W.; Monthioux, Marc; Luzzi, David E. (1998). "Encapsulated C-60 in carbon nanotubes". Nature 396: 323–324. Bibcode:1998Natur.396R.323S. doi:10.1038/24521. 
  6. ^ Smith, B.W.; Luzzi, D.E. (2000). "Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis". Chem. Phys. Lett. 321: 169–174. Bibcode:2000CPL...321..169S. doi:10.1016/S0009-2614(00)00307-9. 
  7. ^ Su, H.; Goddard, W.A.; Zhao, Y. (2006). "Dynamic friction force in a carbon peapod oscillator". Nanotechnology 17 (22): 5691–5695. arXiv:cond-mat/0611671. Bibcode:2006Nanot..17.5691S. doi:10.1088/0957-4484/17/22/026. 
  8. ^ Wang, M.; Li, C.M. (2010). "An oscillator in a carbon peapod controllable by an external electric field: A molecular dynamics study". Nanotechnology 21 (3): 035704. Bibcode:2010Nanot..21c5704W. doi:10.1088/0957-4484/21/3/035704. 
  9. ^ DOI:10.1021/nn401995z
    Rujukan ini akan diselesaikan secara otomatis dalam beberapa menit. Anda dapat melewati antrian atau membuat secara manual
  10. ^ "A Better Way to Make Nanotubes". Lawrence Berkeley National Laboratory. January 5, 2009. 
  11. ^ Bertozzi, C. (2009). "Carbon Nanohoops: Shortest Segment of a Carbon Nanotube Synthesized". Lawrence Berkeley National Laboratory. 
  12. ^ Zhao, X.; Liu, Y.; Inoue, S.; Suzuki, T.; Jones, R.; Ando, Y. (2004). "Smallest Carbon Nanotube is 3 Å in Diameter". Phys. Rev. Lett. 92 (12): 125502. Bibcode:2004PhRvL..92l5502Z. doi:10.1103/PhysRevLett.92.125502. PMID 15089683. 
  13. ^ Hayashi, Takuya; Kim, Yoong Ahm; Matoba, Toshiharu; Esaka, Masaya; Nishimura, Kunio; Tsukada, Takayuki; Endo, Morinobu; Dresselhaus, Mildred S. (2003). "Smallest Freestanding Single-Walled Carbon Nanotube". Nano Letters 3 (7): 887–889. Bibcode:2003NanoL...3..887H. doi:10.1021/nl034080r. 
  14. ^ Guan, L.; Suenaga, K.; Iijima, S. (2008). "Smallest Carbon Nanotube Assigned with Atomic Resolution Accuracy". Nano Letters 8 (2): 459–462. Bibcode:2008NanoL...8..459G. doi:10.1021/nl072396j. PMID 18186659. 
  15. ^ "Densest array of carbon nanotubes grown to date". KurzweilAI. 2013-09-27. 
  16. ^ DOI:10.1063/1.4818619
    Rujukan ini akan diselesaikan secara otomatis dalam beberapa menit. Anda dapat melewati antrian atau membuat secara manual

Pranala Luar[sunting | sunting sumber]