Titik Feynman

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Beberapa ratus permulaan π yang berisi sejumlah urutan dari dua angka (kuning), tiga angka (hijau), dan enam angka (merah), disebut "titik Feynman".

Titik Feynman adalah urutan dari enam angka 9 yang mulai dari tempat desimal ke-762 dalam representasi desimal π. Urutan ini diberi nama seorang ahli fisika Amerika Serikat, Richard Feynman, yang mengatakan pada suatu kuliah, bahwa ia ingin mengingat angka-angka π sampai titik ini, sehingga ia dapat menyebut mereka serta mengakhiri dengan kata "delapan, delapan, delapan, delapan, delapan, delapan dan sebagainya", untuk mengejek, bahwa π adalah bilangan rasional.[1][2]

Statistik berhubung[sunting | sunting sumber]

Didugai, tapi belum dikenal, apakah Pi ada bilangan normal. Untuk bilangan normal yang dipilih secara acak, kemungkinan munculnya urutan dari enam angka apapun (untuk angka-angka yang sama atau tidak) dalam representasi desimal adalah kira-kira 0.08%.[1]

Urutan dari enam angka muncul lain kali pada posisi 193.034 dan terdiri dari angka 9.[1] Urutan dari enam angka yang berikut terdiri dari angka 8, muncul pada posisi 222.299. 0 terulang enam kali pada posisi 1.699.927.[3]

Titik Feynman juga urutan dari empat dan lima angka yang muncul pertama kali. Urutan berikut dari empat angka bertemu pada posisi 1.589 dan terdiri dari angka 7.[4]

Bilangan 2π (kadang-kadang ditulis dengan huruf Yunani τ (tau) berisi tujuh angka yang terulang, yang mulai dari posisi desimal ke-761. Itu dapat dijelaskan dengan mengalikan angka-angka π pada posisi ke-761 sampai 768 dengan 2 sehinnga τ=2π, atau 2 x 49999998, yang sama dengan 99999996. Oleh karena itu, Tau memiliki urutan dari tujuh angka yang sama pada posisi ke-761. Sebaliknya, munculnya dari 7 angka berturut-turut yang sama adalah 3333333 pada posisi 710.100.

Lihat pula[sunting | sunting sumber]

Referensi[sunting | sunting sumber]

  1. ^ a b c Arndt, J. & Haenel, C. (2001), Pi — Unleashed, Berlin: Springer, hlm. 3, ISBN 3540665722 .
  2. ^ Wells, D. (1986), The Penguin Dictionary of Curious and Interesting Numbers, Middlesex, Inggris: Penguin Books, hlm. 51, ISBN 0140261494 .
  3. ^ Pi Search
  4. ^ Lihat online Pi Search.