Lompat ke isi

Jaringan saraf tiruan: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Mssetiadi (bicara | kontrib)
kTidak ada ringkasan suntingan
Mssetiadi (bicara | kontrib)
k +Bibliografi
Baris 51: Baris 51:


Sebuah jaringan syaraf adalah sebuah sistem yang dibentuk dari sejumlah elemen pemroses sederhana yang bekerja secara paralel dimana fungsinya ditentukan oleh stuktur jaringan, kekuatan hubungan, dan pegolahan dilakukan pada komputasi elemen atau nodes
Sebuah jaringan syaraf adalah sebuah sistem yang dibentuk dari sejumlah elemen pemroses sederhana yang bekerja secara paralel dimana fungsinya ditentukan oleh stuktur jaringan, kekuatan hubungan, dan pegolahan dilakukan pada komputasi elemen atau nodes

==Bibliografi==
<div class="references-small">
*{{cite book | author=Bar-Yam, Yaneer | title = [http://necsi.org/publications/dcs/Bar-YamChap2.pdf Dynamics of Complex Systems, Chapter 2] | year = 2003 |}}

*{{cite book | author=Bar-Yam, Yaneer | title = [http://necsi.org/publications/dcs/Bar-YamChap3.pdf Dynamics of Complex Systems, Chapter 3] | year = 2003 |}}

*{{cite book | author=Bar-Yam, Yaneer | title = [http://necsi.org/publications/mtw/ Making Things Work] | year = 2005 |}} Please see Chapter 3

* Bhagat, P.M. (2005) ''Pattern Recognition in Industry'', Elsevier. ISBN 0-08-044538-1

* Bishop, C.M. (1995) ''Neural Networks for Pattern Recognition'', Oxford: Oxford University Press. ISBN 0-19-853849-9 (hardback) or ISBN 0-19-853864-2 (paperback)

* Duda, R.O., Hart, P.E., Stork, D.G. (2001) ''Pattern classification (2nd edition)'', Wiley, ISBN 0-471-05669-3

* Gurney, K. (1997) ''An Introduction to Neural Networks'' London: Routledge. ISBN 1-85728-673-1 (hardback) or ISBN 1-85728-503-4 (paperback)

* Haykin, S. (1999) '' Neural Networks: A Comprehensive Foundation'', Prentice Hall, ISBN 0-13-273350-1

* Fahlman, S, Lebiere, C (1991). ''The Cascade-Correlation Learning Architecture'', created for [[National Science Foundation]], Contract Number EET-8716324, and [[Defense Advanced Research Projects Agency]] (DOD), ARPA Order No. 4976 under Contract F33615-87-C-1499. [http://www.cs.iastate.edu/~honavar/fahlman.pdf electronic version]

* Hertz, J., Palmer, R.G., Krogh. A.S. (1990) ''Introduction to the theory of neural computation'', Perseus Books. ISBN 0-201-51560-1

* Lawrence, Jeanette (1994) ''Introduction to Neural Networks'', California Scientific Software Press. ISBN 1-883157-00-5

* Masters, Timothy (1994) ''Signal and Image Processing with Neural Networks'', John Wiley & Sons, Inc. ISBN 0-471-04963-8

* Ness, Erik. 2005. [http://www.conbio.org/cip/article61WEB.cfm SPIDA-Web]. ''Conservation in Practice'' 6(1):35-36. On the use of artificial neural networks in species taxonomy.

* [[Brian D. Ripley|Ripley, Brian D]]. (1996) ''Pattern Recognition and Neural Networks'', Cambridge

* Smith, Murray (1993) ''Neural Networks for Statistical Modeling'', Van Nostrand Reinhold, ISBN 0-442-01310-8

* Wasserman, Philip (1993) ''Advanced Methods in Neural Computing'', Van Nostrand Reinhold, ISBN 0-442-00461-3
</div>


==Pranala luar==
==Pranala luar==

Revisi per 24 Desember 2007 16.38

Jaringan saraf tiruan merupakan jaringan dari unit pemroses kecil yang saling terhubung, yang dimodelkan berdasar jaringan saraf (neuron) jaringan saraf.

Jaringan saraf tiruan (JST) (Bahasa Inggris: artificial neural network (ANN), atau juga disebut simulated neural network (SNN), atau umumnya hanya disebut neural network (NN)), adalah jaringan dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan jaringan saraf manusia. JST merupakan sistem adaptif yang dapat merubah strukturnya untuk memecahkan masalah berdasarkan informasi eksternal maupun internal yang mengalir melalui jaringan tersebut.

Secara sederhana, JST adalah sebuah alat pemodelan data statistik non-linier. JST dapat digunakan untuk memodelkan hubungan yang kompleks antara input dan output untuk menemukan pola-pola pada data.

Sejarah

Saat ini bidang kecerdasan buatan dalam usahanya menirukan intelegensi manusia, belum mengadakan pendekatan dalam bentuk fisiknya melainkan dari sisi yang lain. Pertama-tama diadakan studi mengenai teori dasar mekanisme proses terjadinya intelegensi. Bidang ini disebut ‘Cognitive Science’. Dari teori dasar ini dibuatlah suatu model untuk disimulasikan pada komputer, dan dalam perkembangannya yang lebih lanjut dikenal berbagai sistem kecerdasan buatan yang salah satunya adalah jaringan saraf tiruan. Dibandingkan dengan bidang ilmu yang lain, jaringan saraf tiruan relatif masih baru. Sejumlah literatur menganggap bahwa konsep jaringan saraf tiruan bermula pada makalah Waffen McCulloch dan Walter Pitts pada tahun 1943. Dalam makalah tersebut mereka mencoba untuk memformulasikan model matematis sel-sel otak. Metode yang dikembangkan berdasarkan sistem saraf biologi ini, merupakan suatu langkah maju dalam industri komputer.

Pengertian Dasar

Tidak ada dua otak manusia yang sama, setiap otak selalu berbeda. Beda dalam ketajaman, ukuran dan pengorganisasiannya. Salah satu cara untuk memahami bagaimana otak bekerja adalah dengan mengumpulkan informasi dari sebanyak mungkin scan otak manusia dan memetakannya. Hal tersebut merupakan upaya untuk menemukan cara kerja rata-rata otak manusia itu. Peta otak manusia diharapkan dapat menjelaskan misteri mengenai bagaimana otak mengendalikan setiap tindak tanduk manusia, mulai dari penggunaan bahasa hingga gerakan.

Walaupun demikian kepastian cara kerja otak manusia masih merupakan suatu misteri. Meski beberapa aspek dari prosesor yang menakjubkan ini telah diketahui tetapi itu tidaklah banyak. Beberapa aspek-aspek tersebut, yaitu :

a. Tiap bagian pada otak manusia memiliki alamat, dalam bentuk formula kimia, dan sistem saraf manusia berusaha untuk mendapatkan alamat yang cocok untuk setiap akson (saraf penghubung) yang dibentuk.

b. Melalui pembelajaran, pengalaman dan interaksi antara sistem maka struktur dari otak itu sendiri akan mengatur fungsi-fungsi dari setiap bagiannya.

c. Axon-axon pada daerah yang berdekatan akan berkembang dan mempunyai bentuk fisik mirip, sehingga terkelompok dengan arsitektur tertentu pada otak.

d. Axon berdasarkan arsitekturnya bertumbuh dalam urutan waktu, dan terhubung pada struktur otak yang berkembang dengan urutan waktu yang sama.

Berdasarkan keempat aspek tersebut di atas dapat ditarik suatu kesimpulan bahwa otak tidak seluruhnya terbentuk oleh proses genetis. Terdapat proses lain yang ikut membentuk fungsi dari bagian-bagian otak, yang pada akhirnya menentukan bagaimana suatu informasi diproses oleh otak.

Elemen yang paling mendasar dari jaringan saraf adalah sel saraf. Sel-sel saraf inilah membentuk bagian kesadaran manusia yang meliputi beberapa kemampuan umum. Pada dasarnya sel saraf biologi menerima masukan dari sumber yang lain dan mengkombinasikannya dengan beberapa cara, melaksanakan suatu operasi yang non-linear untuk mendapatkan hasil dan kemudian mengeluarkan hasil akhir tersebut.

Dalam tubuh manusia terdapat banyak variasi tipe dasar sel saraf, sehingga proses berpikir manusia menjadi sulit untuk direplikasi secara elektrik. Sekalipun demikian, semua sel saraf alami mempunyai empat komponen dasar yang sama. Keempat komponen dasar ini diketahui berdasarkan nama biologinya yaitu, dendrit, soma, akson, dan sinapsis. Dendrit merupakan suatu perluasan dari soma yang menyerupai rambut dan bertindak sebagai saluran masukan. Saluran masukan ini menerima masukan dari sel saraf lainnya melalui sinapsis. Soma dalam hal ini kemudian memproses nilai masukan menjadi sebuah output yang kemudian dikirim ke sel saraf lainnya melalui akson dan sinapsis.

Penelitian terbaru memberikan bukti lebih lanjut bahwa sel saraf biologi mempunyai struktur yang lebih kompleks dan lebih canggih daripada sel saraf buatan yang kemudian dibentuk menjadi jaringan saraf buatan yang ada sekarang ini. Ilmu biologi menyediakan suatu pemahaman yang lebih baik tentang sel saraf sehingga memberikan keuntungan kepada para perancang jaringan untuk dapat terus meningkatkan sistem jaringan saraf buatan yang ada berdasarkan pada pemahaman terhadap otak biologi.

Sel saraf-sel saraf ini terhubung satu dengan yang lainnya melalui sinapsis. Sel saraf dapat menerima rangsangan berupa sinyal elektrokimiawi dari sel saraf-sel saraf yang lain. Berdasarkan rangsangan tersebut, sel saraf akan mengirimkan sinyal atau tidak berdasarkan kondisi tertentu. Konsep dasar semacam inilah yang ingin dicoba para ahli dalam menciptakan sel tiruan.

Definisi

Suatu jaringan saraf tiruan memproses sejumlah besar informasi secara paralel dan terdistribusi, hal ini terinspirasi oleh model kerja otak biologis. Beberapa definisi tentang jaringan saraf tiruan adalah sebagai berikut di bawah ini.

Hecht-Nielsend (1988) mendefinisikan sistem saraf buatan sebagai berikut:

"Suatu neural network (NN), adalah suatu struktur pemroses informasi yang terdistribusi dan bekerja secara paralel, yang terdiri atas elemen pemroses (yang memiliki memori lokal dan beroperasi dengan informasi lokal) yang diinterkoneksi bersama dengan alur sinyal searah yang disebut koneksi. Setiap elemen pemroses memiliki koneksi keluaran tunggal yang bercabang (fan out) ke sejumlah koneksi kolateral yang diinginkan (setiap koneksi membawa sinyal yang sama dari keluaran elemen pemroses tersebut). Keluaran dari elemen pemroses tersebut dapat merupakan sebarang jenis persamaan matematis yang diinginkan. Seluruh proses yang berlangsung pada setiap elemen pemroses harus benar-benar dilakukan secara lokal, yaitu keluaran hanya bergantung pada nilai masukan pada saat itu yang diperoleh melalui koneksi dan nilai yang tersimpan dalam memori lokal".

Menurut Haykin, S. (1994), Neural Networks: A Comprehensive Foundation, NY, Macmillan, mendefinisikan jaringan saraf sebagai berikut:

“Sebuah jaringan saraf adalah sebuah prosesor yang terdistribusi paralel dan mempuyai kecenderungan untuk menyimpan pengetahuan yang didapatkannya dari pengalaman dan membuatnya tetap tersedia untuk digunakan. Hal ini menyerupai kerja otak dalam dua hal yaitu: 1. Pengetahuan diperoleh oleh jaringan melalui suatu proses belajar. 2. Kekuatan hubungan antar sel saraf yang dikenal dengan bobot sinapsis digunakan untuk menyimpan pengetahuan.

Dan menurut Zurada, J.M. (1992), Introduction To Artificial Neural Systems, Boston: PWS Publishing Company, mendefinisikan sebagai berikut:

“Sistem saraf tiruan atau jaringan saraf tiruan adalah sistem selular fisik yang dapat memperoleh, menyimpan dan menggunakan pengetahuan yang didapatkan dari pengalaman”.

DARPA Neural Network Study (1988, AFCEA International Press, p. 60) mendefinisikan jaringan syaraf buatan sebagai berikut :

Sebuah jaringan syaraf adalah sebuah sistem yang dibentuk dari sejumlah elemen pemroses sederhana yang bekerja secara paralel dimana fungsinya ditentukan oleh stuktur jaringan, kekuatan hubungan, dan pegolahan dilakukan pada komputasi elemen atau nodes

Bibliografi

  • Duda, R.O., Hart, P.E., Stork, D.G. (2001) Pattern classification (2nd edition), Wiley, ISBN 0-471-05669-3
  • Haykin, S. (1999) Neural Networks: A Comprehensive Foundation, Prentice Hall, ISBN 0-13-273350-1
  • Hertz, J., Palmer, R.G., Krogh. A.S. (1990) Introduction to the theory of neural computation, Perseus Books. ISBN 0-201-51560-1
  • Lawrence, Jeanette (1994) Introduction to Neural Networks, California Scientific Software Press. ISBN 1-883157-00-5
  • Masters, Timothy (1994) Signal and Image Processing with Neural Networks, John Wiley & Sons, Inc. ISBN 0-471-04963-8
  • Ness, Erik. 2005. SPIDA-Web. Conservation in Practice 6(1):35-36. On the use of artificial neural networks in species taxonomy.
  • Smith, Murray (1993) Neural Networks for Statistical Modeling, Van Nostrand Reinhold, ISBN 0-442-01310-8
  • Wasserman, Philip (1993) Advanced Methods in Neural Computing, Van Nostrand Reinhold, ISBN 0-442-00461-3

Pranala luar