E (konstanta matematika): Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
mengganti templat
Klasüo (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Baris 1: Baris 1:
{{DISPLAYTITLE:''e'' (mathematical constant)}}
{{Periksa terjemahan|en|e (mathematical constant)}}{{Cleanup|2=terjemahannya masih belum selesai dan tidak akurat.}}{{DISPLAYTITLE:{{mvar|e}} (konstanta matematika)}}
{{Short description|2,71828..., basis logaritma alami}}
{{tanpa_referensi}}
{{Redirect|Bilangan Euler|kegunaan lain|Daftar benda yang dinamai menurut nama Leonhard Euler#Bilangan}}
[[Berkas:E-ruud.png|jmpl|<math>e</math> adalah bilangan di mana gradien (kemiringan) dari fungsi <math>f(x) = e^x</math> pada setiap titiknya sama dengan nilai (tinggi) fungsi tersebut pada titik yang sama.]]{{E (konstanta matematika)}}
{{Redirect|E (bilangan)|kode yang mewakili bahan tambahan makanan|Bilangan E}}
[[Konstanta matematika]] '''''{{mvar|e}}''''' adalah basis dari [[logaritma alami]]. Kadang-kadang disebut juga '''bilangan Euler''' sebagai penghargaan atas ahli matematika [[Swiss]], [[Leonhard Euler]], atau juga '''konstanta Napier''' sebagai penghargaan atas ahli matematika [[Skotlandia]], [[John Napier]] yang merumuskan konsep [[logaritma]] untuk pertama kali. Bilangan ini adalah salah satu bilangan yang terpenting dalam matematika, sama pentingnya dengan 0, 1, ''i'', dan [[pi|π]]. Bilangan ini memiliki beberapa definisi yang ekuivalen; sebagian ada di bawah.
[[Berkas:hyperbola E.svg|thumb|237px|right|Grafik persamaan <math>y = 1/x</math>. Di antaranya, <math>e</math> adalah bilangan unik yang lebih besar dari 1 yang membuat daerah yang diarsir sama dengan 1.]]
{{e (konstanta matematika)}}


Bilangan <math>e</math> (atau, disebut juga sebagai '''bilangan Euler''') adalah [[konstanta matematika]] yang dimana nilai kira-kiranya sama dengan 2,71828 dan dikarakterisasi dalam berbagai cara. Hal ini termasuk [[basis logaritma|basis]] dari [[logaritma alami]].<ref>{{cite book |title=Calculus with Analytic Geometry |edition=illustrated |first1=Earl William |last1=Swokowski |publisher=Taylor & Francis |year=1979 |isbn=978-0-87150-268-1 |page=370 |url=https://books.google.com/books?id=gJlAOiCZRnwC}} [https://books.google.com/books?id=gJlAOiCZRnwC&pg=PA370 Extract of page 370]</ref><ref>{{Cite web|title=e - Euler's number|url=https://www.mathsisfun.com/numbers/e-eulers-number.html|access-date=2020-08-10|website=www.mathsisfun.com}}</ref> Ini adalah [[limit dari sebuah urutan|limit]] dari <math>(1 + 1/n)^n</math> sebagai <math>n</math> yang mendekati nilai tak hingga, ekspresi yang muncul dalam studi [[bunga majemuk (keuangan)|bunga majemuk]]. Ini dihitung sebagai jumlah dari [[Deret (matematika)|deret]] tak hingga<ref>[[Encyclopedic Dictionary of Mathematics]] 142.D</ref><ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|title=e|url=https://mathworld.wolfram.com/e.html|access-date=2020-08-10|website=mathworld.wolfram.com|language=en|ref=mathworld}}</ref>
Nilai bilangan ini, dipotong pada posisi ke-30 setelah tanda desimal (tanpa dibulatkan), adalah:
:<math>e = \sum\limits_{n = 0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1} + \frac{1}{1\cdot 2} + \frac{1}{1\cdot 2\cdot 3} + \cdots</math>


Ini juga merupakan bilangan positif unik <math>a</math> sehingga grafik fungsi <math>y = a^x</math> memiliki [[kemiringan]] dari 1 pada <math>x = 0</math>.<ref>{{cite book |title=Calculus I |edition=2nd |first1=Jerrold |last1=Marsden |first2=Alan |last2=Weinstein |publisher=Springer |year=1985 |isbn=0-387-90974-5 |page=319 |url=https://books.google.com/books?id=KVnbZ0osbAkC}}</ref>
:''{{mvar|e}}'' ≈ 2,718281828459045235360287471352

[[Fungsi eksponensial]] (alami) <math>f(x) = e^x</math> adalah fungsi unik <math>f</math> sama dengan [[turunan]]-diri dan memenuhi persamaan <math>f''(0) = 1</math>; maka seseorang juga mendefinisikan <math>e</math> sebagai <math>f(1)</math>. Logaritma alami atau logaritma ke basis <math>e</math>, adalah [[fungsi invers]] pada fungsi eksponensial alami. Logaritma alamai suatu bilangan <math>k > 1</math> didefinisikan secara langsung sebagai [[integral|luas bawah]] kurva <math>y = 1/x</math> antara <math>x = 1</math> dan <math>x = k</math>, dalam hal ini <math>e</math> adalah nilai <math>k</math> yang luasnya sama dengan satu (lihat gambar diatas).

<math>e</math> kadang-kadang disebut '''bilangan Euler''', setelah metematikawan asal Swiss [[Leonhard Euler]] (jangan keliru dengan <math>\gamma</math>, [[konstanta Euler–Mascheroni]], terkadang disebut juga sebagai ''konstanta Euler''), atau '''konstanta Napier'''.<ref name=":1" /> Namun, pilihan Euler atas simbol <math>e</math> dikatakan sudah dipertahankan untuk menghormatinya.<ref name="mathworld">{{cite web|last=Sondow|first=Jonathan|title=e|url=http://mathworld.wolfram.com/e.html|work=[[MathWorld|Wolfram Mathworld]]|publisher=[[Wolfram Research]]|access-date=10 May 2011}}</ref> Konstanta ini ditemukan oleh matematikawan Swiss [[Jacob Bernoulli]] saat mempelajari bunga majemuk.<ref name="Pickover">{{cite book |title=The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics |edition=illustrated |first1=Clifford A. |last1=Pickover |publisher=Sterling Publishing Company |year=2009 |isbn=978-1-4027-5796-9 |page=166 |url=https://books.google.com/books?id=JrslMKTgSZwC}} [https://books.google.com/books?id=JrslMKTgSZwC&pg=PA166 Extract of page 166]</ref><ref name="OConnor">{{cite web|url=<!-- http://www.gap-system.org/~history/PrintHT/e.html -->http://www-history.mcs.st-and.ac.uk/HistTopics/e.html|title=The number ''e''|publisher=MacTutor History of Mathematics|first1=J J|last1=O'Connor|first2=E F|last2=Robertson}}</ref>

Bilangan <math>e</math> sangat penting digunakan dalam bidang matematika,<ref>{{cite book|title = An Introduction to the History of Mathematics|url = https://archive.org/details/introductiontohi00eves_0|url-access = registration|author = Howard Whitley Eves|year = 1969|publisher = Holt, Rinehart & Winston|isbn =978-0-03-029558-4}}</ref> disamping 0, 1, [[Pi|<math>\pi</math>]], dan {{mvar|[[Unit imajiner|<math>\mathrm{i}</math>]]}}. Kelimanya muncul dalam satu formulasi [[identitas Euler]], dan memainkan peran penting dan berulang di seluruh bidang matematika.<ref>{{cite book |title=Euler's Pioneering Equation: The most beautiful theorem in mathematics |edition=illustrated |first1=Robinn |last1=Wilson |publisher=Oxford University Press |year=2018 |isbn=9780192514059 |page=(preface) |url=https://books.google.com/books?id=345HDwAAQBAJ}}</ref><ref>{{cite book |title=Pi: A Biography of the World's Most Mysterious Number |edition=illustrated |first1=Alfred S. |last1=Posamentier |first2=Ingmar |last2=Lehmann |publisher=Prometheus Books |year=2004 |isbn=9781591022008 |page=68 |url=https://books.google.com/books?id=QFPvAAAAMAAJ}}</ref> Seperti konstanta <math>\pi</math>, <math>e</math> adalah [[Bilangan irasional|irasional]] (yaitu, tidak dapat direpresentasikan sebagai rasio bilangan bulat) dan [[Bilangan transendental|transendental]] (yaitu bukan akar dari [[polinomial]] bukan nol dengan koefisien rasional).<ref name=":1" /> Untuk 50 tempat desimal nilai <math>e</math> adalah:
{{block indent
| {{gaps|2.71828|18284|59045|23536|02874|71352|66249|77572|47093|69995...}} {{OEIS|A001113}}.
}}


==Sejarah==
==Sejarah==

Revisi per 19 April 2022 13.03


Grafik persamaan . Di antaranya, adalah bilangan unik yang lebih besar dari 1 yang membuat daerah yang diarsir sama dengan 1.

Bilangan (atau, disebut juga sebagai bilangan Euler) adalah konstanta matematika yang dimana nilai kira-kiranya sama dengan 2,71828 dan dikarakterisasi dalam berbagai cara. Hal ini termasuk basis dari logaritma alami.[1][2] Ini adalah limit dari sebagai yang mendekati nilai tak hingga, ekspresi yang muncul dalam studi bunga majemuk. Ini dihitung sebagai jumlah dari deret tak hingga[3][4]

Ini juga merupakan bilangan positif unik sehingga grafik fungsi memiliki kemiringan dari 1 pada .[5]

Fungsi eksponensial (alami) adalah fungsi unik sama dengan turunan-diri dan memenuhi persamaan ; maka seseorang juga mendefinisikan sebagai . Logaritma alami atau logaritma ke basis , adalah fungsi invers pada fungsi eksponensial alami. Logaritma alamai suatu bilangan didefinisikan secara langsung sebagai luas bawah kurva antara dan , dalam hal ini adalah nilai yang luasnya sama dengan satu (lihat gambar diatas).

kadang-kadang disebut bilangan Euler, setelah metematikawan asal Swiss Leonhard Euler (jangan keliru dengan , konstanta Euler–Mascheroni, terkadang disebut juga sebagai konstanta Euler), atau konstanta Napier.[4] Namun, pilihan Euler atas simbol dikatakan sudah dipertahankan untuk menghormatinya.[6] Konstanta ini ditemukan oleh matematikawan Swiss Jacob Bernoulli saat mempelajari bunga majemuk.[7][8]

Bilangan sangat penting digunakan dalam bidang matematika,[9] disamping 0, 1, , dan . Kelimanya muncul dalam satu formulasi identitas Euler, dan memainkan peran penting dan berulang di seluruh bidang matematika.[10][11] Seperti konstanta , adalah irasional (yaitu, tidak dapat direpresentasikan sebagai rasio bilangan bulat) dan transendental (yaitu bukan akar dari polinomial bukan nol dengan koefisien rasional).[4] Untuk 50 tempat desimal nilai adalah:

2.71828182845904523536028747135266249775724709369995... (barisan A001113 pada OEIS).

Sejarah

Referensi pertama untuk konstanta diterbitkan pada tahun 1618 dalam tabel lampiran dari sebuah karya tentang logaritma oleh John Napier.[8] Namun, semua tidak berisi konstanta itu sendiri, tetapi hanya daftar logaritma yang dihitung dari nilai konstanta. Diasumsikan bahwa tabel tersebut ditulis oleh William Oughtred.

Penemuan konstanta itu sendiri dikreditkan ke Jacob Bernoulli pada tahun 1683,[12][13] yang mencoba to find the value of the following expression (which is equal to e):

Aplikasi

Bunga majemuk

Pengaruh memperoleh bunga tahunan 20% pada sebuah awal $1,000 investasi pada berbagai frekuensi penggabungan

Jacob Bernoulli menemukan konstanta ini pada tahun 1683, ketika mempelajari pertanyaan tentang bunga majemuk:[8]

Sebuah akun dimulai dengan $1,00 dan membayar bunga 100 persen per tahun. Jika bunga dikreditkan sekali, pada akhir tahun, nilai akun di akhir tahun adalah $2,00. Apa yang terjadi jika bunga dihitung dan dikreditkan lebih sering sepanjang tahun?

Jika bunga dikreditkan dua kali dalam setahun, tingkat bunga untuk setiap 6 bulan akan menjadi 50%, jadi $ 1 awal dikalikan 1,5 dua kali, menghasilkan $1.00 × 1.52 = $2.25 di akhir tahun. Peracikan hasil kuartalan $1.00 × 1.254 = $2.4414..., dan menggabungkan hasil bulanan $1.00 × (1 + 1/12)12 = $2.613035… Bila ada n interval majemuk, bunga untuk setiap interval akan 100%/n dan nilainya pada akhir tahun akan menjadi $1.00 × (1 + 1/n)n.

Bernoulli memperhatikan bahwa urutan ini mendekati batas (kekuatan minat) dengan lebih besar n dan, dengan demikian, interval penggabungan yang lebih kecil. Meracik mingguan (n = 52) menghasilkan $ 2,692597 ..., sementara penggabungan uang harian (n = 365) menghasilkan $ 2,714567 ... (sekitar dua sen lebih). Batasnya sebagai n tumbuh besar adalah jumlah yang kemudian dikenal sebagai e. Artinya, dengan penggabungan kontinu, nilai akun akan mencapai $2.7182818...

Secara lebih umum, akun yang dimulai dari $ 1 dan menawarkan tingkat bunga tahunan sebesar R, setelah itu t tahun, hasil dari eRt dolar dengan peracikan terus menerus.

(Perhatikan di sini karena R adalah desimal yang setara dengan suku bunga yang dinyatakan sebagai persentase, jadi untuk bunga 5%, R = 5/100 = 0.05.)

Pengadilan Bernoulli

Grafik probabilitas P jika not mengamati peristiwa independen masing-masing probabilitas 1/n sesudah n Pengadilan Bernoulli, dan 1 − P  vs n ; dapat diamati bahwa ketika n meningkat, probabilitas 1/n peristiwa kebetulan tidak pernah muncul setelah n mencoba dengan cepat menyatu dengan 1/e.

Bilangan dari e itu sendiri juga memiliki aplikasi dalam teori probabilitas, dengan cara yang tidak jelas terkait dengan pertumbuhan eksponensial:

Secara khusus, kemungkinan hadil nol kali (k = 0) adalah

yang sangat mendekati batas

Distribusi normal standar

Distribusi normal dengan rata-rata nol dan deviasi standar satuan dikenal sebagai distribusi normal standar, diberikan oleh fungsi kepadatan probabilitas

Batasan varian unit (dan juga deviasi standar unit) menghasilkan 12 dalam eksponen, dan batasan luas total unit di bawah kurva menghasilkan faktor .[bukti] Fungsi ini simetris x = 0, di mana ia mencapai nilai maksimumnya , dan memiliki titik belok di x = ±1.

Kekacauan

Aplikasi lain dari e, juga ditemukan sebagian oleh Jacob Bernoulli bersama dengan Pierre Raymond de Montmort, Ada dalam masalah kekacauan, juga dikenal sebagai masalah cek topi:[14] n tamu diundang ke pesta, dan di depan pintu, semua tamu memeriksa topi mereka dengan kepala pelayan, yang pada gilirannya menempatkan topi ke dalam n kotak, masing-masing diberi label dengan nama satu tamu. Tapi kepala pelayan belum menanyakan identitas para tamu, jadi dia menempatkan topi ke dalam kotak yang dipilih secara acak. Masalah de Montmort adalah menemukan probabilitas itu, tidak ada topi yang dimasukkan ke kotak kanan. Probabilitas ini, dilambangkan dengan , is:

Sebagai nomor n sebagai tamu cenderung tak terbatas, pn pendekatan 1 / e. Selanjutnya, banyaknya cara penempatan topi ke dalam kotak sehingga tidak ada topi yang berada di kotak yang tepat. n!/e (dibulatkan ke bilangan bulat terdekat untuk setiap positif n).[15]

Masalah perencanaan yang optimal

Sebatang panjang L dipecah menjadi n bagian yang sama. Nilai dari n yang memaksimalkan produk dari panjang adalah:[16]

or


Asimtotik

Angka e terjadi secara alami sehubungan dengan banyak masalah yang melibatkan asimtotik. Contohnya adalah Rumus Stirling untuk asimtotik dari fungsi faktorial, di mana kedua bilangan tersebut e dan π muncul:

Sebagai konsekuensi,

Lihat pula

Referensi

  1. ^ Swokowski, Earl William (1979). Calculus with Analytic Geometry (edisi ke-illustrated). Taylor & Francis. hlm. 370. ISBN 978-0-87150-268-1.  Extract of page 370
  2. ^ "e - Euler's number". www.mathsisfun.com. Diakses tanggal 2020-08-10. 
  3. ^ Encyclopedic Dictionary of Mathematics 142.D
  4. ^ a b c Weisstein, Eric W. "e". mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2020-08-10. 
  5. ^ Marsden, Jerrold; Weinstein, Alan (1985). Calculus I (edisi ke-2nd). Springer. hlm. 319. ISBN 0-387-90974-5. 
  6. ^ Sondow, Jonathan. "e". Wolfram Mathworld. Wolfram Research. Diakses tanggal 10 May 2011. 
  7. ^ Pickover, Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics (edisi ke-illustrated). Sterling Publishing Company. hlm. 166. ISBN 978-1-4027-5796-9.  Extract of page 166
  8. ^ a b c O'Connor, J J; Robertson, E F. "The number e". MacTutor History of Mathematics. 
  9. ^ Howard Whitley Eves (1969). An Introduction to the History of MathematicsPerlu mendaftar (gratis). Holt, Rinehart & Winston. ISBN 978-0-03-029558-4. 
  10. ^ Wilson, Robinn (2018). Euler's Pioneering Equation: The most beautiful theorem in mathematics (edisi ke-illustrated). Oxford University Press. hlm. (preface). ISBN 9780192514059. 
  11. ^ Posamentier, Alfred S.; Lehmann, Ingmar (2004). Pi: A Biography of the World's Most Mysterious Number (edisi ke-illustrated). Prometheus Books. hlm. 68. ISBN 9781591022008. 
  12. ^ Jacob Bernoulli mempertimbangkan masalah penggabungan bunga yang terus-menerus, yang menyebabkan ekspresi seri untuk e. Lihat: Jacob Bernoulli (1690) "Quæstiones nonnullæ de usuris, dengan solusi problematis de sorte alearum, propositi di Efem. Empedu. 1685" (Beberapa pertanyaan tentang minat, dengan solusi masalah tentang permainan untung-untungan, diajukan di Journal des Savants (Ephemerides Eruditorum Gallicanæ), di tahun (anno) 1685.**), Acta eruditorum, pp. 219–23. On page 222, Bernoulli mengajukan pertanyaan: "Alterius naturæ hoc Problema est: Quæritur, si creditor aliquis pecuniæ summam fænori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum ipsi finito anno debeatur?" (Ini adalah masalah jenis lain: Pertanyaannya adalah, apakah pemberi pinjaman akan berinvestasi [a] jumlah uang [at] bunga, biarkan terakumulasi, sehingga [at] setiap saat [it] akan menerima [a] bagian proporsional dari bunga tahunan; berapa banyak dia akan berutang [pada] akhir tahun ini?) Bernoulli menyusun deret pangkat untuk menghitung jawabannya, lalu menulis: " … quæ nostra serie [ekspresi matematika untuk deret geometri] &c. major est. … si a=b, debebitur plu quam 2½a & minus quam 3a." ( … which our series. … bila a=b, [pemberi pinjaman] akan berhutang lebih dari 2½a dan kurang dari 3a.) bila a=b, deret geometris direduksi menjadi deret untuk a × e, so 2.5 < e < 3. (** Rujukannya adalah pada masalah yang diajukan oleh Jacob Bernoulli dan yang muncul di Journal des Sçavans of 1685 at the bottom of page 314.)
  13. ^ Carl Boyer; Uta Merzbach (1991). Sejarah MatematikaPerlu mendaftar (gratis) (edisi ke-2nd). Wiley. hlm. 419. 
  14. ^ Grinstead, C.M. dan Snell, J.L.Introduction to probability theory (diterbitkan secara online di bawah GFDL), p. 85.
  15. ^ Knuth (1997) Seni Pemrograman Komputer Volume I, Addison-Wesley, p. 183 ISBN 0-201-03801-3.
  16. ^ Steven Finch (2003). Konstanta matematikaPerlu mendaftar (gratis). Cambridge University Press. hlm. 14.