Lompat ke isi

Persamaan kubik: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Dimas Pnt (bicara | kontrib)
←Membuat halaman berisi 'Berkas:Polynomialdeg3.svg|ka|jmpl|210x210px|Grafik fungsi kubik dengan 3 akar nyata (di mana kurva memotong sumbu horizontal pada ''y'' = 0). Kasing yang ditunjukkan...'
Tag: tanpa kategori [ * ] VisualEditor
 
Tidak ada ringkasan suntingan
Baris 1: Baris 1:
[[Berkas:Polynomialdeg3.svg|ka|jmpl|210x210px|Grafik fungsi kubik dengan 3 akar nyata (di mana kurva memotong sumbu horizontal pada ''y'' = 0). Kasing yang ditunjukkan memiliki dua titik kritis. Di sini fungsinya adalah {{math|''f''(''x'') {{=}} (''x''<sup>3</sup> + 3''x''<sup>2</sup> − 6''x'' − 8)/4}}.]]
[[Berkas:Polynomialdeg3.svg|ka|jmpl|210x210px|Grafik fungsi kubik dengan 3 akar nyata (di mana kurva memotong sumbu horizontal pada ''y'' = 0). Kasing yang ditunjukkan memiliki dua titik kritis. Di sini fungsinya adalah {{math|''f''(''x'') {{=}} (''x''<sup>3</sup> + 3''x''<sup>2</sup> − 6''x'' − 8)/4}}.]]


Dalam [[Aljabar]], '''persamaan kubik''' dalam satu variabel adalah [[persamaan]] bentuk
Dalam [[aljabar]], '''persamaan kubik''' dalam satu variabel adalah [[persamaan]] bentuk


<math>{\displaystyle ax^{3}+bx^{2}+cx+d=0}</math>
<math>{\displaystyle ax^{3}+bx^{2}+cx+d=0}</math>
Baris 14: Baris 14:


Koefisien tidak perlu bilangan riil. Banyak dari apa yang dibahas di bawah ini berlaku untuk koefisien dalam [[Medan (matematika)|medan]] apa pun dengan karakteristik selain 2 dan 3. Solusi dari persamaan kubik tidak harus milik bidang yang sama dengan koefisien. Sebagai contoh, beberapa persamaan kubik dengan koefisien rasional memiliki akar yang [[bilangan kompleks]] irasional (dan bahkan tidak nyata).
Koefisien tidak perlu bilangan riil. Banyak dari apa yang dibahas di bawah ini berlaku untuk koefisien dalam [[Medan (matematika)|medan]] apa pun dengan karakteristik selain 2 dan 3. Solusi dari persamaan kubik tidak harus milik bidang yang sama dengan koefisien. Sebagai contoh, beberapa persamaan kubik dengan koefisien rasional memiliki akar yang [[bilangan kompleks]] irasional (dan bahkan tidak nyata).

==Sejarah==
Persamaan kubik dikenal oleh orang-orang Babilonia, Yunani, Tionghoa, India, dan Mesir kuno.<ref>{{Citation|last = Høyrup|first = Jens|title = Amphora: Festschrift for Hans Wussing on the Occasion of his 65th Birthday|chapter = The Babylonian Cellar Text BM 85200 + VAT 6599 Retranslation and Analysis|pages = 315–358|publisher = [[Birkhäuser]]|year = 1992|doi = 10.1007/978-3-0348-8599-7_16|isbn = 978-3-0348-8599-7}}</ref><ref name="oxf"/><ref name=wae/> Papan aksara paku [[Babilonia]] (abad ke-20 sampai ke-16 SM) telah ditemukan berisi tabel untuk menghitung kubik dan akar kubik.<ref>{{cite book|last=Cooke|first=Roger|title=The History of Mathematics|url=https://books.google.com/?id=CFDaj0WUvM8C&pg=PT63|date=8 November 2012|publisher=John Wiley & Sons|isbn=978-1-118-46029-0|page=63}}</ref><ref name="nen"/> Orang-orang Babilonia mungkin telah menggunakan tabel-tabel tersebut untuk menyelesaikan persamaan kubik, tetapi tidak ada bukti yang mengonfirmasinya.<ref name=co/> Masalah [[menggandakan kubus]] melibatkan persamaan kubik yang paling sederhana dan tua, dan dipercayai oleh orang-orang Mesir kuno tidak memiliki penyelesaian.<ref>{{Harvtxt|Guilbeau|1930|p=8}} menyatakan bahwa "orang-orang Mesir menganggap bahwa tidak mungkin ada penyelesaiannya, tetapi orang-orang Yunani lebih dekat menemukan penyelesaian."</ref> Pada abad ke-5 SM, [[Hippokrates dari Khios|Hippokrates]] mereduksi masalah ini menjadi masalah mencari rata-rata geometri antara suatu garis dengan garis lain yang dua kali lipat panjangnya, tetapi tidak bisa menyelesaikan ini menggunakan sebuah [[konstruksi jangka dan penggaris]],<ref name=Guilbeau>{{Harvtxt|Guilbeau|1930|pp=8–9}}</ref> cara yang sekarang diketahui tidak mungkin dilakukan. Metode untuk menyelesaikan persamaan kubik muncul dalam ''[[The Nine Chapters on the Mathematical Art]]'', sebuah teks [[matematika Tiongkok]] yang dikumpulkan pada sekitar abad ke-2 SM dan dikomentari oleh [[Liu Hui]] pada abad ke-3.<ref name="oxf"/> Pada abad ke-3 Masehi, [[Matematika Yunani|matematikawan Yunani]] [[Diofantos]] menemukan penyelesaian bilangan bulat atau rasional untuk beberapa persamaan bivariat ([[persamaan Diophantine]]).<ref name=wae/><ref>{{cite book|title=Diophantus of Alexandria: A Study in the History of Greek Algebra|last=Heath|first=Thomas L.|author-link=Thomas_Little_Heath|pages=[https://archive.org/details/diophantusofalex00heatiala/page/87 87]–91|url=https://archive.org/details/diophantusofalex00heatiala|date=April 30, 2009|isbn=978-1578987542|publisher=Martino Pub}}</ref> [[Hippokrates dari Khios|Hippokrates]], [[Menaikhmos]] dan [[Archimedes]] dipercaya telah hampir menyelesaikan permasalahan menggandakan kubus menggunakan [[irisan kerucut]] yang berpotongan,<ref name=Guilbeau/> meskipun sejarawan seperti Reviel Netz mempertanyakan apakah para orang Yunani memikirkan tentang persamaan kubik atau hanya masalah yang bisa menghasilkan persamaan kubik. Sebagian yang lain seperti [[T. L. Heath]], yang menerjemahkan semua karya [[Archimedes]], tidak setuju, memberikan bukti bahwa Archimedes benar-benar menyelesaikan persamaan kubik menggunakan perpotongan dua irisan kerucut, tetapi juga mendiskusikan apabila akarnya ada 0, 1 atau 2.<ref>{{cite book|title=The works of Archimedes|author=Archimedes|author-link=Archimedes|others=Translation by T. L. Heath|date=October 8, 2007|isbn= 978-1603860512|publisher=Rough Draft Printing}}</ref>
[[Berkas:Graph of cubic polynomial.svg|200px|left|thumb|[[Grafik fungsi|Grafik]] fungsi kubik ''f''(''x'') = 2''x''<sup>3</sup>&nbsp;&minus;&nbsp;3''x''<sup>2</sup>&nbsp;&minus;&nbsp;3''x''&nbsp;+&nbsp;2 =
(''x''&nbsp;+&nbsp;1)&nbsp;(2''x''&nbsp;&minus;&nbsp;1)&nbsp;(''x''&nbsp;&minus;&nbsp;2)]]

Pada abad ke-7, astronom-matematikawan [[dinasti Tang]] [[Wang Xiaotong]] dalam risalah matematikanya yang berjudul [[Jigu Suanjing]] secara sistematis menetapkan dan menyelesaikan [[Analisis numerik|secara numerik]] 25 persamaan kubik dengan bentuk {{math|''x''<sup>3</sup> + ''px''<sup>2</sup> + ''qx'' {{=}} ''N''}}, 23 di antaranya dengan {{math|''p'', ''q'' ≠ 0}}, dan dua di antaranya dengan {{math|''q'' {{=}} 0}}.<ref name="Mikami1974"/>

Pada abad ke-11, penyair-matematikawan Persia, [[Umar Khayyam]] (1048–1131), membuat kemajuan signifikan dalam teori persamaan kubik. Dalam karangan lamanya, dia menemukan bahwa sebuah persamaan kubik bisa memiliki lebih dari satu penyelesaiaan dan menyatakan bahwa persamaan kubik tidak bisa diselesaikan menggunakan konstruksi jangka dan penggaris. Dia juga menemukan sebuah [[#Penyelesaian Omar Khayyám|penyelesaian geometris]].<ref>A paper of Omar Khayyam, Scripta Math. 26 (1963), pages 323–337</ref><ref>In {{MacTutor|id=Khayyam|title=Omar Khayyam}} one may read ''This problem in turn led Khayyam to solve the cubic equation'' {{math|''x''<sup>3</sup> + 200''x'' {{=}} 20''x''<sup>2</sup> + 2000}} ''and he found a positive root of this cubic by considering the intersection of a rectangular hyperbola and a circle. An approximate numerical solution was then found by interpolation in trigonometric tables''. The ''then'' in the last assertion is erroneous and should, at least, be replaced by ''also''. The geometric construction was perfectly suitable for Omar Khayyam, as it occurs for solving a problem of geometric construction. At the end of his article he says only that, for this geometrical problem, if approximations are sufficient, then a simpler solution may be obtained by consulting [[Generating trigonometric tables|trigonometric tables]]. Textually: ''If the seeker is satisfied with an estimate, it is up to him to look into the table of chords of Almagest, or the table of sines and versed sines of Mothmed Observatory.'' This is followed by a short description of this alternate method (seven lines).</ref> Dalam karya lainnya kemudian, ''Treatise on Demonstration of Problems of Algebra'', dia menulis sebuah pengelompokan lengkap persamaan kubik dengan penyelesaian geometris umum yang ditemukan dengan cara memotongkan irisan kerucut.<ref>J. J. O'Connor and E. F. Robertson (1999), [http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Khayyam.html Omar Khayyam], [[MacTutor History of Mathematics archive]], states, "Khayyam himself seems to have been the first to conceive a general theory of cubic equations."<!-- quotation is in MacTutor--></ref><ref>{{Harvtxt|Guilbeau|1930|p=9}} states, "Omar Al Hay of Chorassan, about 1079 AD did most to elevate to a method the solution of the algebraic equations by intersecting conics."</ref>

Pada abad ke-12, matematikawan India Bhaskara II mencoba menyelesaikan persamaan kubik tetapi secara umum tidak berhasil. Akan tetapi, dia memberikan satu contoh persamaan kubik: {{math|''x''<sup>3</sup> + 12''x'' {{=}} 6''x''<sup>2</sup> + 35}}.<ref>{{Citation|last = Datta|first = Bibhutibhushan|author-link = Bibhutibhushan Datta|last2 = Singh|first2 = Avadhesh Narayan|title = History of Hindu Mathematics: A Source Book|volume = 2|page = 76|chapter = Equation of Higher Degree|publisher = Bharattya Kala Prakashan|location = Delhi, India|year = 2004|isbn = 81-86050-86-8|title-link = History of Hindu Mathematics: A Source Book}}</ref> Pada abad ke-12, [[Matematika Islam abad pertengahan|matematikawan Persia]] lainnya, [[Sharaf al-Din al-Tusi]] (1135–1213), menulis ''Al-Muʿādalāt'' (''Treatise on Equations''), yang berurusan dengan delapan jenis persamaan kubik dengan penyelesaian positif dan lima jenis persamaan kubik yang mungkin tidak punya penyelesaian positif. Dia menggunakan apa yang kemudian dikenal sebagai "metode [[Aturan Ruffini|Ruffini]]-[[Metode Horner|Horner]]" untuk memperkirakan [[Analisis numerik|secara numerik]] [[akar fungsi|akar]] persamaan kubik. Dia juga menggunakan konsep [[maksimum dan minimum]] kurva untuk menyelesaikan persamaan kubik yang mungkin tidak punya penyelesaian positif.<ref>{{MacTutor|id=Al-Tusi_Sharaf|title=Sharaf al-Din al-Muzaffar al-Tusi}}</ref> Dia memahami pentingnya [[diskriminan]] suatu persamaan kubik dalam mencari penyelesaiaan aljabar dari jenis-jenis persamaan kubik tertentu.<ref>{{Citation |first=J. L. |last=Berggren |year=1990 |title=Innovation and Tradition in Sharaf al-Dīn al-Ṭūsī's Muʿādalāt |journal=Journal of the American Oriental Society |volume=110 |issue=2 |pages=304–309 |doi= 10.2307/604533|jstor = 604533}}</ref>

Dalam bukunya ''Flos'', Leonardo de Pisa, juga dikenal sebagai [[Fibonacci]] (1170–1250), mampu memperkirakan dengan dekat penyelesaian positif untuk persamaan kubik {{math|''x''<sup>3</sup> + 2''x''<sup>2</sup> + 10''x'' {{=}} 20}}. Menulis dengan [[angka-angka Babilonia]] dia memberikan hasil 1.22.7.42.33.4.40 (ekuivalen dengan 1&nbsp;+&nbsp;22/60&nbsp;+&nbsp;7/60<sup>2</sup>&nbsp;+&nbsp;42/60<sup>3</sup>&nbsp;+&nbsp;33/60<sup>4</sup>&nbsp;+&nbsp;4/60<sup>5</sup>&nbsp;+&nbsp;40/60<sup>6</sup>), yang memiliki [[galat hampiran]] sekitar 10<sup>−9</sup>.<ref>{{MacTutor|id=Fibonacci|title=Fibonacci}}</ref>

Pada awal abad ke-16, matematikawan Italia [[Scipione del Ferro]] (1465–1526) menemukan metode untuk menyelesaikan sebuah jenis persamaan kubik, yaitu yang berbentuk {{math|''x''<sup>3</sup> + ''mx'' {{=}} ''n''}}. Sebenarnya, semua persamaan kubik bisa direduksi menjadi bentuk ini jika kita membolehkan {{mvar|m}} dan {{mvar|n}} bernilai negatif, tetapi [[bilangan negatif]] belum diketahuinya pada saat itu. Del Ferro merahasiakan pencapaiannya sampai kematiannya, pada mana dia memberi tahu muridnya Antonio Fior tentang itu.
[[Berkas:Niccolò Tartaglia.jpg|thumb|160px|Niccolò Fontana Tartaglia]]
Pada tahun 1530, [[Niccolò Tartaglia]] (1500–1557) menerima dua permasalahan persamaan kubik dari [[Zuanne da Coi]] dan mengumumkan bahwa dia bisa menyelesaikannya. Dia kemudian ditantang oleh Fior, yang menghasilkan pertandingan terkenal di antara keduanya. Masing-masing kontestan harus menaruh sejumlah uang dan mengusulkan banyak permasalahan yang lawannya harus selesaikan. Siapapun yang menyelesaikan lebih banyak permasalahan dalam waktu 30 hari akan mendapatkan semua uangnya. Tartaglia menerima pertanyaan dalam bentuk {{math|''x''<sup>3</sup> + ''mx'' {{=}} ''n''}}, yang dia telah kembangkan metode umumnya. Fior menerima pertanyaan dalam bentuk {{math|''x''<sup>3</sup> + ''mx''<sup>2</sup> {{=}} ''n''}}, yang rupanya terlalu sulit untuk dia selesaikan, dan Tartaglia memenangkan pertandingannya.

Kemudian, Tartaglia dibujuk oleh [[Gerolamo Cardano]] (1501–1576) untuk mengungkapkan rahasianya dalam menyelesaikan persamaan kubik. Pada tahun 1539, Tartaglia melakukannya tetapi dengan syarat Cardano tidak boleh memberitahukannya dan apabila dia menulis buku mengenai kubik, dia harus memberikan Tartaglia untuk membuat terbitannya. Beberapa tahun kemudian, Cardano mempelajari tentang karya del Ferro dan menerbitkan metode del Ferro dalam bukunya ''[[Ars Magna (Gerolamo Cardano)|Ars Magna]]'' pada tahun 1545, jadi Cardano memberikan Tartaglia enam tahun untuk menerbitkan hasilnya (dengan kredit diberikan kepada Tartaglia untuk penyelesaiannya sendiri). Janji Cardano kepada Tartaglia mengatakan bahwa dia tidak akan menerbitkan hasil pekerjaan Tartaglia, dan Cardano merasa dia menerbitkan hasil pekerjaan del Ferro, jadi perjanjiannya tidak dilanggar. Meskipun begitu, ini menyebabkan Cardano mendapatkan tantangan dari Tartaglia, yang Cardano tolak. Tantangannya akhirnya diterima oleh murid Cardano [[Lodovico Ferrari]] (1522–1565). Ferrari mendapatkan hasil yang lebih baik daripada Tartaglia dalam pertandingan mereka, dan Tartaglia kehilangan gengsi dan pendapatannya.<ref>{{Cite book |last=Katz |first=Victor |title=A History of Mathematics |page=[https://archive.org/details/historyofmathema00katz/page/220 220] |location=Boston |publisher=Addison Wesley |year=2004 |isbn=9780321016188 |url=https://archive.org/details/historyofmathema00katz/page/220 }}</ref>

Cardano memperhatikan bahwa metode Tartaglia terkadang perlu melibatkan akar kuadrat dari bilangan negatif. Dia bahkan memasukkan sebuah penghitungan [[bilangan kompleks|bilangan-bilangan kompleks]] tersebut dalam ''Ars Magna'', tetapi dia tidak benar-benar memahaminya. [[Rafael Bombelli]] mempelajai masalah ini secara rinci<ref name="Bombelli">{{Citation|last2 = Mazur|first2 = Barry|author2-link = Barry Mazur|last = La Nave|first = Federica|journal = [[The Mathematical Intelligencer]]|title = Reading Bombelli|volume = 24|issue = 1|pages = 12–21|year = 2002|doi = 10.1007/BF03025306}}</ref> dan dianggap sebagai penemu bilangan kompleks.

[[François Viète]] (1540–1603) secara mandiri menurunkan penyelesiaan trigonometri untuk kubik dengan tidak akar real, dan [[René Descartes]] (1596–1650) memperluas karya Viète.<ref name=Nickalls/>

==Referensi==
{{Reflist|30em
|refs=
<ref name=co>{{cite book|last=Cooke|first=Roger|title=Classical Algebra: Its Nature, Origins, and Uses|url=https://books.google.com/?id=JG-skeT1eWAC&pg=PA64|year=2008|publisher=John Wiley & Sons|isbn=978-0-470-27797-3|page=64}}</ref>
<ref name="oxf">{{cite book|last=Crossley|first=John|last2=W.-C. Lun|first2=Anthony|title=The Nine Chapters on the Mathematical Art: Companion and Commentary|url=https://books.google.com/?id=eiTJHRGTG6YC&pg=PA176|year=1999|publisher=Oxford University Press|isbn=978-0-19-853936-0|page=176}}</ref>
<ref name="Mikami1974">{{Citation
|first= Yoshio
|last= Mikami
|author-link= Yoshio Mikami
|title= The Development of Mathematics in China and Japan
|chapter= Chapter 8 Wang Hsiao-Tung and Cubic Equations
|pages= 53&ndash;56
|publisher= Chelsea Publishing Co.
|location= New York
|year= 1974
|edition= 2nd
|origyear= 1913
|isbn= 978-0-8284-0149-4
|doi=}}</ref>
<ref name="nen">{{cite book|last= Nemet-Nejat|first=Karen Rhea|title=Daily Life in Ancient Mesopotamia|url=https://archive.org/details/dailylifeinancie00neme|url-access= registration|year=1998|publisher=Greenwood Publishing Group|isbn=978-0-313-29497-6|page=[https://archive.org/details/dailylifeinancie00neme/page/306 306]}}</ref>
<ref name=Nickalls>{{Citation |last=Nickalls |first=R. W. D. |title=Viète, Descartes and the cubic equation |url=http://www.nickalls.org/dick/papers/maths/descartes2006.pdf |journal=[[Mathematical Gazette]] |volume=90 |issue=518 |date=July 2006 |pages=203–208 |doi= 10.1017/S0025557200179598}}</ref>
<ref name=wae>Van der Waerden, Geometry and Algebra of Ancient Civilizations, chapter 4, Zurich 1983 {{ISBN|0-387-12159-5}}</ref>
}}

==Pranala luar==
{{commons category|Cubic functions}}
* {{springer|title=Cardano formula|id=p/c020350|ref=none}}
*[http://www-history.mcs.st-and.ac.uk/history/HistTopics/Quadratic_etc_equations.html Sejarah persamaan kuadrat, kubik dan kuartik] di [[Arsip MacTutor]].
*[https://www.youtube.com/watch?v=N-KXStupwsc 500 years of NOT teaching THE CUBIC FORMULA. What is it they think you can't handle?] – video [[YouTube]] oleh [[Mathologer]] mengenai sejarah persamaan kubik dan penyelesaian Cardano, serta penyelesaian Ferrari untuk [[persamaan kuartik]]

{{Matematika-stub}}

[[Kategori:Aljabar elementer]]
[[Kategori:Persamaan]]
[[Kategori:Polinomial]]

Revisi per 30 Juni 2020 23.01

Grafik fungsi kubik dengan 3 akar nyata (di mana kurva memotong sumbu horizontal pada y = 0). Kasing yang ditunjukkan memiliki dua titik kritis. Di sini fungsinya adalah f(x) = (x3 + 3x2 − 6x − 8)/4.

Dalam aljabar, persamaan kubik dalam satu variabel adalah persamaan bentuk

di mana adalah nol.

Solusi dari persamaan ini disebut akar fungsi dari fungsi kubik yang didefinisikan oleh sisi kiri persamaan. Jika semua koefisien , , , dan dari persamaan kubik adalah bilangan riil, maka ia memiliki setidaknya satu akar nyata (ini berlaku untuk semua fungsi polinomial derajat ganjil). Semua akar persamaan kubik dapat ditemukan dengan cara berikut:

Koefisien tidak perlu bilangan riil. Banyak dari apa yang dibahas di bawah ini berlaku untuk koefisien dalam medan apa pun dengan karakteristik selain 2 dan 3. Solusi dari persamaan kubik tidak harus milik bidang yang sama dengan koefisien. Sebagai contoh, beberapa persamaan kubik dengan koefisien rasional memiliki akar yang bilangan kompleks irasional (dan bahkan tidak nyata).

Sejarah

Persamaan kubik dikenal oleh orang-orang Babilonia, Yunani, Tionghoa, India, dan Mesir kuno.[1][2][3] Papan aksara paku Babilonia (abad ke-20 sampai ke-16 SM) telah ditemukan berisi tabel untuk menghitung kubik dan akar kubik.[4][5] Orang-orang Babilonia mungkin telah menggunakan tabel-tabel tersebut untuk menyelesaikan persamaan kubik, tetapi tidak ada bukti yang mengonfirmasinya.[6] Masalah menggandakan kubus melibatkan persamaan kubik yang paling sederhana dan tua, dan dipercayai oleh orang-orang Mesir kuno tidak memiliki penyelesaian.[7] Pada abad ke-5 SM, Hippokrates mereduksi masalah ini menjadi masalah mencari rata-rata geometri antara suatu garis dengan garis lain yang dua kali lipat panjangnya, tetapi tidak bisa menyelesaikan ini menggunakan sebuah konstruksi jangka dan penggaris,[8] cara yang sekarang diketahui tidak mungkin dilakukan. Metode untuk menyelesaikan persamaan kubik muncul dalam The Nine Chapters on the Mathematical Art, sebuah teks matematika Tiongkok yang dikumpulkan pada sekitar abad ke-2 SM dan dikomentari oleh Liu Hui pada abad ke-3.[2] Pada abad ke-3 Masehi, matematikawan Yunani Diofantos menemukan penyelesaian bilangan bulat atau rasional untuk beberapa persamaan bivariat (persamaan Diophantine).[3][9] Hippokrates, Menaikhmos dan Archimedes dipercaya telah hampir menyelesaikan permasalahan menggandakan kubus menggunakan irisan kerucut yang berpotongan,[8] meskipun sejarawan seperti Reviel Netz mempertanyakan apakah para orang Yunani memikirkan tentang persamaan kubik atau hanya masalah yang bisa menghasilkan persamaan kubik. Sebagian yang lain seperti T. L. Heath, yang menerjemahkan semua karya Archimedes, tidak setuju, memberikan bukti bahwa Archimedes benar-benar menyelesaikan persamaan kubik menggunakan perpotongan dua irisan kerucut, tetapi juga mendiskusikan apabila akarnya ada 0, 1 atau 2.[10]

Grafik fungsi kubik f(x) = 2x3 − 3x2 − 3x + 2 = (x + 1) (2x − 1) (x − 2)

Pada abad ke-7, astronom-matematikawan dinasti Tang Wang Xiaotong dalam risalah matematikanya yang berjudul Jigu Suanjing secara sistematis menetapkan dan menyelesaikan secara numerik 25 persamaan kubik dengan bentuk x3 + px2 + qx = N, 23 di antaranya dengan p, q ≠ 0, dan dua di antaranya dengan q = 0.[11]

Pada abad ke-11, penyair-matematikawan Persia, Umar Khayyam (1048–1131), membuat kemajuan signifikan dalam teori persamaan kubik. Dalam karangan lamanya, dia menemukan bahwa sebuah persamaan kubik bisa memiliki lebih dari satu penyelesaiaan dan menyatakan bahwa persamaan kubik tidak bisa diselesaikan menggunakan konstruksi jangka dan penggaris. Dia juga menemukan sebuah penyelesaian geometris.[12][13] Dalam karya lainnya kemudian, Treatise on Demonstration of Problems of Algebra, dia menulis sebuah pengelompokan lengkap persamaan kubik dengan penyelesaian geometris umum yang ditemukan dengan cara memotongkan irisan kerucut.[14][15]

Pada abad ke-12, matematikawan India Bhaskara II mencoba menyelesaikan persamaan kubik tetapi secara umum tidak berhasil. Akan tetapi, dia memberikan satu contoh persamaan kubik: x3 + 12x = 6x2 + 35.[16] Pada abad ke-12, matematikawan Persia lainnya, Sharaf al-Din al-Tusi (1135–1213), menulis Al-Muʿādalāt (Treatise on Equations), yang berurusan dengan delapan jenis persamaan kubik dengan penyelesaian positif dan lima jenis persamaan kubik yang mungkin tidak punya penyelesaian positif. Dia menggunakan apa yang kemudian dikenal sebagai "metode Ruffini-Horner" untuk memperkirakan secara numerik akar persamaan kubik. Dia juga menggunakan konsep maksimum dan minimum kurva untuk menyelesaikan persamaan kubik yang mungkin tidak punya penyelesaian positif.[17] Dia memahami pentingnya diskriminan suatu persamaan kubik dalam mencari penyelesaiaan aljabar dari jenis-jenis persamaan kubik tertentu.[18]

Dalam bukunya Flos, Leonardo de Pisa, juga dikenal sebagai Fibonacci (1170–1250), mampu memperkirakan dengan dekat penyelesaian positif untuk persamaan kubik x3 + 2x2 + 10x = 20. Menulis dengan angka-angka Babilonia dia memberikan hasil 1.22.7.42.33.4.40 (ekuivalen dengan 1 + 22/60 + 7/602 + 42/603 + 33/604 + 4/605 + 40/606), yang memiliki galat hampiran sekitar 10−9.[19]

Pada awal abad ke-16, matematikawan Italia Scipione del Ferro (1465–1526) menemukan metode untuk menyelesaikan sebuah jenis persamaan kubik, yaitu yang berbentuk x3 + mx = n. Sebenarnya, semua persamaan kubik bisa direduksi menjadi bentuk ini jika kita membolehkan m dan n bernilai negatif, tetapi bilangan negatif belum diketahuinya pada saat itu. Del Ferro merahasiakan pencapaiannya sampai kematiannya, pada mana dia memberi tahu muridnya Antonio Fior tentang itu.

Niccolò Fontana Tartaglia

Pada tahun 1530, Niccolò Tartaglia (1500–1557) menerima dua permasalahan persamaan kubik dari Zuanne da Coi dan mengumumkan bahwa dia bisa menyelesaikannya. Dia kemudian ditantang oleh Fior, yang menghasilkan pertandingan terkenal di antara keduanya. Masing-masing kontestan harus menaruh sejumlah uang dan mengusulkan banyak permasalahan yang lawannya harus selesaikan. Siapapun yang menyelesaikan lebih banyak permasalahan dalam waktu 30 hari akan mendapatkan semua uangnya. Tartaglia menerima pertanyaan dalam bentuk x3 + mx = n, yang dia telah kembangkan metode umumnya. Fior menerima pertanyaan dalam bentuk x3 + mx2 = n, yang rupanya terlalu sulit untuk dia selesaikan, dan Tartaglia memenangkan pertandingannya.

Kemudian, Tartaglia dibujuk oleh Gerolamo Cardano (1501–1576) untuk mengungkapkan rahasianya dalam menyelesaikan persamaan kubik. Pada tahun 1539, Tartaglia melakukannya tetapi dengan syarat Cardano tidak boleh memberitahukannya dan apabila dia menulis buku mengenai kubik, dia harus memberikan Tartaglia untuk membuat terbitannya. Beberapa tahun kemudian, Cardano mempelajari tentang karya del Ferro dan menerbitkan metode del Ferro dalam bukunya Ars Magna pada tahun 1545, jadi Cardano memberikan Tartaglia enam tahun untuk menerbitkan hasilnya (dengan kredit diberikan kepada Tartaglia untuk penyelesaiannya sendiri). Janji Cardano kepada Tartaglia mengatakan bahwa dia tidak akan menerbitkan hasil pekerjaan Tartaglia, dan Cardano merasa dia menerbitkan hasil pekerjaan del Ferro, jadi perjanjiannya tidak dilanggar. Meskipun begitu, ini menyebabkan Cardano mendapatkan tantangan dari Tartaglia, yang Cardano tolak. Tantangannya akhirnya diterima oleh murid Cardano Lodovico Ferrari (1522–1565). Ferrari mendapatkan hasil yang lebih baik daripada Tartaglia dalam pertandingan mereka, dan Tartaglia kehilangan gengsi dan pendapatannya.[20]

Cardano memperhatikan bahwa metode Tartaglia terkadang perlu melibatkan akar kuadrat dari bilangan negatif. Dia bahkan memasukkan sebuah penghitungan bilangan-bilangan kompleks tersebut dalam Ars Magna, tetapi dia tidak benar-benar memahaminya. Rafael Bombelli mempelajai masalah ini secara rinci[21] dan dianggap sebagai penemu bilangan kompleks.

François Viète (1540–1603) secara mandiri menurunkan penyelesiaan trigonometri untuk kubik dengan tidak akar real, dan René Descartes (1596–1650) memperluas karya Viète.[22]

Referensi

  1. ^ Høyrup, Jens (1992), "The Babylonian Cellar Text BM 85200 + VAT 6599 Retranslation and Analysis", Amphora: Festschrift for Hans Wussing on the Occasion of his 65th Birthday, Birkhäuser, hlm. 315–358, doi:10.1007/978-3-0348-8599-7_16, ISBN 978-3-0348-8599-7 
  2. ^ a b Crossley, John; W.-C. Lun, Anthony (1999). The Nine Chapters on the Mathematical Art: Companion and Commentary. Oxford University Press. hlm. 176. ISBN 978-0-19-853936-0. 
  3. ^ a b Van der Waerden, Geometry and Algebra of Ancient Civilizations, chapter 4, Zurich 1983 ISBN 0-387-12159-5
  4. ^ Cooke, Roger (8 November 2012). The History of Mathematics. John Wiley & Sons. hlm. 63. ISBN 978-1-118-46029-0. 
  5. ^ Nemet-Nejat, Karen Rhea (1998). Daily Life in Ancient MesopotamiaPerlu mendaftar (gratis). Greenwood Publishing Group. hlm. 306. ISBN 978-0-313-29497-6. 
  6. ^ Cooke, Roger (2008). Classical Algebra: Its Nature, Origins, and Uses. John Wiley & Sons. hlm. 64. ISBN 978-0-470-27797-3. 
  7. ^ (Guilbeau 1930, hlm. 8) menyatakan bahwa "orang-orang Mesir menganggap bahwa tidak mungkin ada penyelesaiannya, tetapi orang-orang Yunani lebih dekat menemukan penyelesaian."
  8. ^ a b (Guilbeau 1930, hlm. 8–9)
  9. ^ Heath, Thomas L. (April 30, 2009). Diophantus of Alexandria: A Study in the History of Greek Algebra. Martino Pub. hlm. 87–91. ISBN 978-1578987542. 
  10. ^ Archimedes (October 8, 2007). The works of Archimedes. Translation by T. L. Heath. Rough Draft Printing. ISBN 978-1603860512. 
  11. ^ Mikami, Yoshio (1974) [1913], "Chapter 8 Wang Hsiao-Tung and Cubic Equations", The Development of Mathematics in China and Japan (edisi ke-2nd), New York: Chelsea Publishing Co., hlm. 53–56, ISBN 978-0-8284-0149-4 
  12. ^ A paper of Omar Khayyam, Scripta Math. 26 (1963), pages 323–337
  13. ^ In O'Connor, John J.; Robertson, Edmund F., "Omar Khayyam", Arsip Sejarah Matematika MacTutor, Universitas St Andrews . one may read This problem in turn led Khayyam to solve the cubic equation x3 + 200x = 20x2 + 2000 and he found a positive root of this cubic by considering the intersection of a rectangular hyperbola and a circle. An approximate numerical solution was then found by interpolation in trigonometric tables. The then in the last assertion is erroneous and should, at least, be replaced by also. The geometric construction was perfectly suitable for Omar Khayyam, as it occurs for solving a problem of geometric construction. At the end of his article he says only that, for this geometrical problem, if approximations are sufficient, then a simpler solution may be obtained by consulting trigonometric tables. Textually: If the seeker is satisfied with an estimate, it is up to him to look into the table of chords of Almagest, or the table of sines and versed sines of Mothmed Observatory. This is followed by a short description of this alternate method (seven lines).
  14. ^ J. J. O'Connor and E. F. Robertson (1999), Omar Khayyam, MacTutor History of Mathematics archive, states, "Khayyam himself seems to have been the first to conceive a general theory of cubic equations."
  15. ^ (Guilbeau 1930, hlm. 9) states, "Omar Al Hay of Chorassan, about 1079 AD did most to elevate to a method the solution of the algebraic equations by intersecting conics."
  16. ^ Datta, Bibhutibhushan; Singh, Avadhesh Narayan (2004), "Equation of Higher Degree", History of Hindu Mathematics: A Source Book, 2, Delhi, India: Bharattya Kala Prakashan, hlm. 76, ISBN 81-86050-86-8 
  17. ^ O'Connor, John J.; Robertson, Edmund F., "Sharaf al-Din al-Muzaffar al-Tusi", Arsip Sejarah Matematika MacTutor, Universitas St Andrews .
  18. ^ Berggren, J. L. (1990), "Innovation and Tradition in Sharaf al-Dīn al-Ṭūsī's Muʿādalāt", Journal of the American Oriental Society, 110 (2): 304–309, doi:10.2307/604533, JSTOR 604533 
  19. ^ O'Connor, John J.; Robertson, Edmund F., "Fibonacci", Arsip Sejarah Matematika MacTutor, Universitas St Andrews .
  20. ^ Katz, Victor (2004). A History of Mathematics. Boston: Addison Wesley. hlm. 220. ISBN 9780321016188. 
  21. ^ La Nave, Federica; Mazur, Barry (2002), "Reading Bombelli", The Mathematical Intelligencer, 24 (1): 12–21, doi:10.1007/BF03025306 
  22. ^ Nickalls, R. W. D. (July 2006), "Viète, Descartes and the cubic equation" (PDF), Mathematical Gazette, 90 (518): 203–208, doi:10.1017/S0025557200179598 

Pranala luar