Bangun ruang platonik
Dalam ruang tiga dimensi, bangun ruang platonik adalah sebuah polihedron cembung reguler. Bangun ruang tersebut dibangun oleh sisi bangun ruang poligonal kongruen (memiliki bentuk dan ukuran yang sama) reguler (semua sudut sama dan semua sisi setara) dengan jumlah sisi bangun ruang yang sama yang bertemu di setiap Himpunan V. Lima bangun ruang yang memenuhi kriteria tersebut adalah:
Tetrahedron | Kubus | Oktahedron | Dodekahedron | Ikosahedron |
Empat sisi bangun ruang | Enam sisi bangun ruang | Delapan sisi bangun ruang | Dua belas sisi bangun ruang | Dua puluh sisi bangun ruang |
![]() |
![]() |
![]() |
![]() |
![]() |
Sumber[sunting | sunting sumber]
- Atiyah, Michael; Sutcliffe, Paul (2003). "Polyhedra in Physics, Chemistry and Geometry". Milan J. Math. 71: 33–58. arXiv:math-ph/0303071
. doi:10.1007/s00032-003-0014-1.
- Boyer, Carl; Merzbach, Uta (1989). A History of Mathematics (edisi ke-2nd). Wiley. ISBN 0-471-54397-7.
- Coxeter, H. S. M. (1973). Regular Polytopes (edisi ke-3rd). New York: Dover Publications. ISBN 0-486-61480-8.
- Euclid (1956). Heath, Thomas L., ed. The Thirteen Books of Euclid's Elements, Books 10–13 (edisi ke-2nd unabr.). New York: Dover Publications. ISBN 0-486-60090-4.
- Gardner, Martin(1987). The 2nd Scientific American Book of Mathematical Puzzles & Diversions, University of Chicago Press, Chapter 1: The Five Platonic Solids, ISBN 0226282538
- Haeckel, Ernst, E. (1904). Kunstformen der Natur. Available as Haeckel, E. (1998); Art forms in nature Diarsipkan 2009-06-27 di Wayback Machine., Prestel USA. ISBN 3-7913-1990-6.
- Hecht, Laurence; Stevens, Charles B. (Fall 2004). "New Explorations with The Moon Model" (PDF). 21st Century Science and Technology. hlm. 58.
- Kepler. Johannes Strena seu de nive sexangula (On the Six-Cornered Snowflake), 1611 paper by Kepler which discussed the reason for the six-angled shape of the snow crystals and the forms and symmetries in nature. Talks about platonic solids.
- Kleinert, Hagen and Maki, K. (1981). "Lattice Textures in Cholesteric Liquid Crystals" (PDF). Fortschritte der Physik. 29 (5): 219–259. Bibcode:1981ForPh..29..219K. doi:10.1002/prop.19810290503
- Lloyd, David Robert (2012). "How old are the Platonic Solids?". BSHM Bulletin: Journal of the British Society for the History of Mathematics. 27 (3): 131–140. doi:10.1080/17498430.2012.670845.
- Pugh, Anthony (1976). Polyhedra: A visual approach. California: University of California Press Berkeley. ISBN 0-520-03056-7.
- Weyl, Hermann (1952). Symmetry. Princeton, NJ: Princeton University Press. ISBN 0-691-02374-3.
- Wildberg, Christian (1988). John Philoponus' Criticism of Aristotle's Theory of Aether. Walter de Gruyter. pp. 11–12. ISBN 9783110104462
Pranala luar[sunting | sunting sumber]
![]() |
Wikimedia Commons memiliki media mengenai Platonic solids. |
- Platonic solids at Encyclopaedia of Mathematics
- Weisstein, Eric W. "Platonic solid". MathWorld.
- Weisstein, Eric W. "Isohedron". MathWorld.
- Book XIII of Euclid's Elements.
- Interactive 3D Polyhedra in Java
- Solid Body Viewer[pranala nonaktif permanen] is an interactive 3D polyhedron viewer which allows you to save the model in svg, stl or obj format.
- Interactive Folding/Unfolding Platonic Solids Diarsipkan 2007-02-09 di Wayback Machine. in Java
- Paper models of the Platonic solids created using nets generated by Stella software
- Platonic Solids Free paper models(nets)
- Grime, James; Steckles, Katie. "Platonic Solids". Numberphile. Brady Haran. Diarsipkan dari versi asli tanggal 2018-10-23. Diakses tanggal 2019-04-08.
- Teaching Math with Art student-created models
- Teaching Math with Art teacher instructions for making models
- Frames of Platonic Solids images of algebraic surfaces
- Platonic Solids with some formula derivations
- How to make four platonic solids from a cube