Algoritma Gauss-Newton

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Lompat ke: navigasi, cari

Di dalam Ilmu Matematika, algoritma Gauss-Newton digunakan untuk memecahkan masalah-masalah kuadrat terkecil. Algoritma ini merupakan sebuah modifikasi dari metode Newton untuk mengoptimalkan sebuah fungsi. Tidak seperti metode Newton, algoritma Gauss-Newton hanya bisa digunakan untuk mengoptimumkan jumlah dari nilai fungsi kuadrat.

Metode ini merupakan kemahsyuran dari matematikawan Carl Friedrich Gauss.

The problem[sunting | sunting sumber]

Diberikan m fungsi f1, ..., fm of n parameters p1, ..., pn with mn, kita ingin meminimumkan jumlah

Disini, p adalah vektor kolom (p1, ..., pn)T.

The algorithm[sunting | sunting sumber]

Algoritma Gauss-Newton merupakan prosedur iterasi. Ini berarti bahwa pengguna harus menetapkan sebuah penduga pertama untuk parameter vektor p, yang mana akan kita sebut p0.

Berikutnya penduga pk untuk parameter vektor yang kemudian dihasilkan oleh perulangan hubungan

dimana f=(f1, ..., fm)T dan Jf(p) menunjukkan Jacobian dari f saat p.

Matriks invers tidak pernah dihasilakan secara eksplisit dalam praktiknya. Sebagai pengganti, kita gunakan

Dan kita hitung perbaikan δk dengan menyelesaikan sistem linear

.

Line search[sunting | sunting sumber]

Sebuah implementasi yang baik dari algoritma Gauss-Newton juga menggunakan algoritma line search: sebagai pengganti dari formula sebelumnya untuk pk+1, kita gunakan

Dimana kita berusaha memilih sebuah nilai optimal untuk bilangan αk.

Derivation from Newton's method[sunting | sunting sumber]

Hubungan perulangan metode Newton untuk meminimumkan sebuah fungsi S adalah

dimana dan berarti gradien dan Hessian dari S . Sekarang kita misalkan S memiliki bentuk

dimana adalah sebuah nilai fungsi vector yang merupakan komponen .

Dalam kasus ini, gradien diberikan oleh

dimana adalah Jacobian dari , dan Hessian diberikan oleh

dimana adalah Hessian dari .

Catatan bahwa syarat kedua dalam ekspresi ini untuk v menuju nol sama menuju nol. Jadi jika nilai minimum dari S(p) tertutup untuk nol, dan nilai percobaan dari p adalah tertutup untuk minimum, kemudian kita bisa mengira Hessian dengan:

Dengan memasukkan ekspresi ini untuk gradeien dan Hessian kedalam hubungan perulangan sebelumnya kita memiliki

Algoritma lainnya[sunting | sunting sumber]

Metode lain untuk menyelesaikan masalah kuadrat terkecil hanya menggunakan derivative pertama adalah gradient descent. Bagaimanapun, metode ini tidak memasukkan nilai/perhitungan derivative kedua dengan perkiraan yang sama. Karenanya, metode ini terlalu in-efisien untuk fungsi-fungsi tertentu, seperti fungsi Rosenbrock.

Pada kasus dimana minimum lebih besar dari nol, pengabaian syarat/ketentuan pada Hessian bisa jadi signifikan. Pada kasus ini, salah satunya bisa menggunakan algoritma Levenberg-Marquardt, yang merupakan kombinasi dari Gauss-Newton dan gradient descent.

References[sunting | sunting sumber]

  • Nocedal, Jorge; Wright, Stephen (1999). Numerical optimization. New York: Springer. ISBN 0387987932. 
  • Deuflhard, P.; Hohmann, Andreas (2003). Numerical analysis in modern scientific computing: an introduction (2nd ed ed.). New York: Springer. ISBN 0387954104.