Induksi matematika

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Sebuah deskripsi tidak formal dari induksi matematika dapat diilustrasikan dengan mengacu kepada efek sekuensial dari jatuhnya domino.

Induksi matematika merupakan pembuktian deduktif, meski namanya induksi. Induksi matematika atau disebut juga induksi lengkap sering dipergunakan untuk pernyataan-pernyataan yang menyangkut bilangan-bilangan asli.

Pembuktian cara induksi matematika ingin membuktikan bahwa teori atau sifat itu benar untuk semua bilangan asli atau semua bilangan dalam himpunan bagiannya. Caranya ialah dengan menunjukkan bahwa sifat itu benar untuk n = 1 (atau S(1) adalah benar), kemudian ditunjukkan bahwa bila sifat itu benar untuk n = k (bila S(k) benar) menyebabkan sifat itu benar untuk n = k + 1 (atau S(k + 1) benar).

Contoh[sunting | sunting sumber]

Buktikan bahwa jumlah n bilangan ganjil pertama adalah n2.

Persamaan yang perlu dibuktikan:

S(n) = 1 + 3 + 5 +\cdots + 2n - 1 = n ^ 2

Langkah pembuktian pertama:
untuk \ n = 1, benar bahwa \ S(1) = 1 ^ 2 = 1

Langkah pembuktian kedua:
andaikan benar untuk n = k, yaitu

S(k) = 1 + 3 + 5 + \cdots + 2k - 1 = k ^ 2, maka akan dibuktikan benar pula untuk n = k + 1, yaitu
S(k + 1) = 1 + 3 + 5 + \cdots + 2k - 1 + 2(k + 1) - 1 =(k + 1) ^ 2

sekarang sederhanakan persamaan pada sisi kiri dengan mengingat bahwa k ^ 2 = 1 + 3 + 5 + ... + 2k - 1 sesuai dengan pengandaian awal

[1 + 3 + 5 + \cdots + 2k - 1] + 2(k + 1) - 1 = k ^ 2 + 2(k + 1) - 1

kemudian padankan bentuk sederhana tadi dengan sebelah kanan

\ k ^ 2 + 2k + 1 = (k + 1) ^ 2, ingat bahwa (k + 1) ^ 2 = k ^ 2 + 2k + 1
\ (k + 1) ^ 2 = (k + 1) ^ 2 (terbukti benar)

Kesimpulan:
Jadi, S(n) benar untuk semua bilangan asli karena memenuhi kedua langkah pembuktian.

Referensi[sunting | sunting sumber]

Introduction
  • Knuth, Donald E. (1997). The Art of Computer Programming, Volume 1: Fundamental Algorithms (ed. 3rd). Addison-Wesley. ISBN 0-201-89683-4.  (Section 1.2.1: Mathematical Induction, pp. 11-21.)
  • Kolmogorov, Andrey N. (1975). Introductory Real Analysis. Silverman, R. A. (trans., ed.). New York: Dover. ISBN 0-486-61226-0.  Unknown parameter |couauthors= ignored (help) (Section 1.3.8: Transfinite induction, pp. 28-29.)
  • Franklin, J. (1996). Proof in Mathematics: An Introduction. Sydney: Quakers Hill Press. ISBN 1-876192-00-3.  Unknown parameter |couauthors= ignored (help) (Ch. 8.)
History
  • Acerbi, F. (2000). "Plato: Parmenides 149a7-c3. A Proof by Complete Induction?". Archive for History of Exact Sciences 55: 57–76. doi:10.1007/s004070000020. 
  • Bussey, W. H. (1917). "The Origin of Mathematical Induction". The American Mathematical Monthly 24 (5): 199–207. 
  • Cajori, Florian (1918). Origin of the Name "Mathematical Induction" 25 (5). hlm. 197–201.  Unknown parameter |jounal= ignored (help)
  • "Could the Greeks Have Used Mathematical Induction? Did They Use It?". Physis XXXI: 253–265. 1994. 
  • Freudenthal, Hans (1953). "Zur Geschichte der vollständigen Induction". Archives Internationales d'Histiore des Sciences 6: 17–37. 
  • Rabinovitch, Nachum L. (1970). "Rabi Levi Ben Gershon and the Origins of Mathematical Induction". Archive for the History of Exact Science 6: 237–248. doi:10.1007/BF00327237. 
  • Rashed, Roshdi (1972). "L'induction mathématique: al-Karajī, as-Samaw'al". Archive for History of Exact Sciences 9: 1–12. doi:10.1007/BF00348537. 
  • Ungure, S. (1991). "Greek Mathematics and Mathematical Induction". Physis. XXVIII: 273–289. 
  • Ungure, S. (1994). "Fowling after Induction". Physis XXXI: 267–272. 
  • Vacca, G. (1909). "Maurolycus, the First Discoverer of the Principle of Mathematical Induction". Bulletin of the American Mathematical Society 16: 70–73. 
  • Yadegari, Mohammad (1978). "The Use of Mathematical Induction by Abū Kāmil Shujā' Ibn Aslam (850-930)". Isis 69 (2): 259–262. 
  • Kuntarti, Sri Kurnianingsih (2007). Matematika SMA dan MA jilid 3B untuk Kelas XII Semester II Program IPA. Sulistiyono. Jakarta: Esis. ISBN 978-979-015-297-7.  Unknown parameter |couauthors= ignored (help)