Boson Higgs: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler
Baris 15: Baris 15:
| discovered = Tim eksperimen ATLAS dan CMS di Large Hadron Collider (2011-2013)
| discovered = Tim eksperimen ATLAS dan CMS di Large Hadron Collider (2011-2013)
| symbol ={{SubatomicParticle|Higgs boson}}
| symbol ={{SubatomicParticle|Higgs boson}}
| mass = {{nowrap|125.09±0.21 (stat.)±0.11 (syst.) [[Electronvolt#Mass|GeV/''c''<sup>2</sup>]]}} (CMS+ATLAS)<ref>{{Cite journal|last1=ATLAS |last2=CMS |authorlink1=ATLAS experiment|authorlink2=Compact Muon Solenoid|arxiv=1503.07589 |title= Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments|journal=Physical Review Letters |volume=114 |issue=19 |pages=191803 |date=14 May 2015 |doi=10.1103/PhysRevLett.114.191803 |pmid=26024162 |bibcode=2015PhRvL.114s1803A }}</ref>
| mass = 115–{{val|185|ul=GeV/c2}} (ikatan atas bergantung pada model<ref group="Note">Ikatan atas massa boson Higgs ini adalah prediksi dalam Model Standar minimum yang menduga bahwa partikel ini masih merupakan teori konsisten terhadap [[skala Planck]]. Pada perpanjangan MS, ikatan ini bisa diperlonggar atau, dalam hal teori supersimetri, direndahkan. Ikatan bawah yang muncul akibat pengecualian eksperimen langsung oleh [[Large Electron–Positron Collider|LEP]] dinyatakan sah untuk semua perpanjangan MS, namun bisa digunakan lagi dalam kasus tertentu. [http://pdg.lbl.gov/2010/reviews/rpp2010-rev-higgs-boson.pdf]</ref>)
| mean_lifetime = {{val|1.56|e=-22|u=s}}{{#tag:ref
| mean_lifetime = {{val|1.56|e=-22|u=s}}{{#tag:ref
| In the [[Standard Model]], the total [[decay width]] of a Higgs boson with a mass of {{val|125|u=GeV/c2}} is predicted to be {{val|4.07|e=-3|u=GeV}}.<ref name="LHCcrosssections">
| In the [[Standard Model]], the total [[decay width]] of a Higgs boson with a mass of {{val|125|u=GeV/c2}} is predicted to be {{val|4.07|e=-3|u=GeV}}.<ref name="LHCcrosssections">

Revisi per 9 September 2018 02.11

Boson Higgs
Peristiwa simulasi yang menampilkan kemunculan boson Higgs
Komposisi: Partikel dasar
Status: Sebuah partikel baru dengan massa 125 GeV ditemukan pada tahun 2012 dan kemudian dikonfirmasi menjadi boson Higgs dengan pengukuran yang lebih tepat.[1]
Simbol: H0
Penggagas: F. Englert, R. Brout, P. Higgs, G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble (1964)
Penemu: Tim eksperimen ATLAS dan CMS di Large Hadron Collider (2011-2013)
Tipe: 1, menurut Model Standar;
5 atau lebih, menurut model supersimetri
Massa: 125.09±0.21 (stat.)±0.11 (syst.) GeV/c2 (CMS+ATLAS)[2]
Jangka hidup: 1,56×10−22 s[a] (diprediksi)
Spin: 0

Boson Higgs adalah partikel dasar masif hipotetis yang diperkirakan ada sesuai Model Standar (MS) fisika partikel. Keberadaannya diyakini sebagai tanda-tanda penyelesaian atas sejumlah inkonsistensi pada Model Standar. Eksperimen untuk menemukan partikel ini sedang dilakukan dengan menggunakan Large Hadron Collider (LHC) di CERN, serta di Tevatron Fermilab sampai Tevatron ditutup pada akhir 2011. Pada 12 Desember 2011, kolaborasi ATLAS di LHC menemukan bahwa massa boson Higgs yang beragam mulai dari 145 sampai 206 GeV ditiadakan dengan tingkat keyakinan 95%. Kolaborasi CMS di LHC akan diumumkan pada 13 Desember.[4]

Boson Higgs adalah satu-satunya partikel dasar prediksi Model Standar yang belum diamati dalam eksperimen fisika partikel.[5] Partikel ini adalah bagian integral dari mekanisme Higgs, bagian dari Model Standar yang menjelaskan bagaimana sebagian besar partikel dasar yang telah diketahui memperoleh massanya.[Note 1] Misalnya, mekanisme Higgs akan menjelaskan mengapa boson W dan Z, yang menjadi perantara interaksi lemah, memiliki massa sementara foton, yang menjadi perantara elektromagnetisme, tidak memiliki massa. Boson Higgs diperkirakan termasuk dalam kelas partikel boson skalar (boson adalah partikel dengan putaran integer, dan boson skalar memiliki putaran 0.)

Teori yang tidak membutuhkan boson Higgs juga muncul dan akan dipertimbangkan jika keberadaan boson Higgs ditiadakan. Teori-teori tersebut disebut sebagai model nir-Higgs. Sejumlah teori menyatakan bahwa mekanisme apapun yang mampu menciptakan massa partikel dasar harus tampak dengan energi kurang dari 1,4 TeV;[6] karena itu, LHC diharapkan mampu memberikan bukti eksperimental atas keberadaan atau ketidakberadaan boson Higgs.[7]

Pada akhir 2011 sejumlah percobaan berangsur-angsur telah menekankan kisaran massa sekitar 125 GeV/c2. Pada tanggal 4 Juli 2012, tim eksperimen CMS dan ATLAS pada Large Hadron Collider secara independen mengumumkan bahwa mereka mengkonfirmasi penemuan boson yang belum diketahui sebelumnya dengan massa antara 125-127 GeV/c2, yang peri lakunya sejauh ini "konsisten" dengan boson Higgs, sambil menambahkan catatan hati-hati bahwa data dan analisis lebih lanjut diperlukan sebelum mendapatkan identifikasi positif boson tersebut sebagai sejenis boson Higgs.[8]

Catatan

  1. ^ Massa partikel komposit seperti proton dan neuron hanya ada karena mekanisme Higgs, dan sudah diakui sebagai akibat dari interaksi kuat.

Lihat pula

Referensi

  1. ^ "LHC experiments delve deeper into precision". Media and Press relations (Siaran pers). CERN. 11 July 2017. Diakses tanggal 2017-07-23. 
  2. ^ ATLAS; CMS (14 May 2015). "Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments". Physical Review Letters. 114 (19): 191803. arXiv:1503.07589alt=Dapat diakses gratis. Bibcode:2015PhRvL.114s1803A. doi:10.1103/PhysRevLett.114.191803. PMID 26024162. 
  3. ^ LHC Higgs Cross Section Working Group; Dittmaier; Mariotti; Passarino; Tanaka; Alekhin; Alwall; Bagnaschi; Banfi (2012). "Handbook of LHC Higgs Cross Sections: 2. Differential Distributions". CERN Report 2 (Tables A.1 – A.20). 1201: 3084. arXiv:1201.3084alt=Dapat diakses gratis. Bibcode:2012arXiv1201.3084L. doi:10.5170/CERN-2012-002. 
  4. ^ "Higgs boson: Excitement builds over 'glimpses' at LHC". BBC. 2011-12-12. Diakses tanggal 2011-12-13. 
  5. ^ Griffiths, David (2008). "12.1 The Higgs Boson". Introduction to Elementary Particles (edisi ke-Second, Revised). Wiley-VCH. hlm. 403. ISBN 978-3-527-40601-2. The Higgs particle is the only element in the Standard Model for which there is as yet no compelling experimental evidence. 
  6. ^ Lee, Benjamin W.; Quigg, C.; Thacker, H. B. (1977). "Weak interactions at very high energies: The role of the Higgs-boson mass". Physical Review D. 16 (5): 1519–1531. Bibcode:1977PhRvD..16.1519L. doi:10.1103/PhysRevD.16.1519. 
  7. ^ "Huge $10 billion collider resumes hunt for 'God particle' - CNN.com". CNN. 2009-11-11. Diakses tanggal 2010-05-04. 
  8. ^ CERN experiments observe particle consistent with long-sought Higgs boson Siaran pers CERN, diakses pada 10 Juli 2012

Pustaka

Pranala luar


Kesalahan pengutipan: Ditemukan tag <ref> untuk kelompok bernama "lower-alpha", tapi tidak ditemukan tag <references group="lower-alpha"/> yang berkaitan