Sandi Vigenère

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Sandi Vigenère dinamai untuk menghormati Blaise de Vigenère (gambar), sekalipun Giovan Batista Belaso menemukannya sebelum Vigenère.

Sandi Vigenère adalah metode menyandikan teks alfabet dengan menggunakan deretan sandi Caesar berdasarkan huruf-huruf pada kata kunci. Sandi Vigenère merupakan bentuk sederhana dari sandi substitusi polialfabetik. Kelebihan sandi ini dibanding sandi Caesar dan sandi monoalfabetik lainnya adalah sandi ini tidak begitu rentan terhadap metode pemecahan sandi yang disebut analisis frekuensi. Giovan Batista Belaso menjelaskan metode ini dalam buku La cifra del. Sig. Giovan Batista Belaso (1553); dan disempurnakan oleh diplomat Perancis Blaise de Vigenère, pada 1586. Pada abat ke-19, banyak orang yang mengira Vigenère adalah penemu sandi ini, sehingga, sandi ini dikenal luas sebagai "sandi Vigenère".

Sandi ini dikenal luas karena cara kerjanya mudah dimengerti dan dijalankan, dan bagi para pemula sulit dipecahkan. Pada saat kejayaannya, sandi ini dijuluki le chiffre indéchiffrable (bahasa Prancis: 'sandi yang tak terpecahkan'). Metode pemecahan sandi ini baru ditemukan pada abad ke-19. Pada tahun 1854, Charles Babbage menemukan cara untuk memecahkan sandi Vigenère. Metode ini dinamakan tes Kasiski karena Friedrich Kasiski-lah yang pertama mempublikasikannya.

Cara kerja[sunting | sunting sumber]

Tabel Vigenère, atau tabula recta, dapat digunakan untuk enkripsi maupun dekripsi sandi Vigenère.

Sandi Vigenère sebenarnya merupakan pengembangan dari sandi Caesar. Pada sandi Caesar, setiap huruf teks terang digantikan dengan huruf lain yang memiliki perbedaan tertentu pada urutan alfabet. Misalnya pada sandi Caesar dengan geseran 3, A menjadi D, B menjadi E and dan seterusnya. Sandi Vigenère terdiri dari beberapa sandi Caesar dengan nilai geseran yang berbeda.

Untuk menyandikan suatu pesan, digunakan sebuah tabel alfabet yang disebut tabel Vigenère (gambar). Tabel Vigenère berisi alfabet yang dituliskan dalam 26 baris, masing-masing baris digeser satu urutan ke kiri dari baris sebelumnya, membentuk ke-26 kemungkinan sandi Caesar. Setiap huruf disandikan dengan menggunakan baris yang berbeda-beda, sesuai kata kunci yang diulang

Misalnya, teks terang yang hendak disandikan adalah perintah "Serbu Berlin":

serbuberlin

Sedangkan kata kunci antara pengirim dan tujuan adalah "Pizza"

"PIZZA" diulang sehingga jumlah hurufnya sama banyak dengan teks terang:
PIZZAPIZZAP

Huruf pertama pada teks terang, S, disandikan dengan menggunakan baris berjudul P, huruf pertama pada kata kunci. Pada baris P dan kolom S di tabel Vigenère, terdapat huruf H. Demikian pula untuk huruf kedua, digunakan huruf yang terletak pada baris I (huruf kedua kata kunci) dan kolom E (huruf kedua teks terang), yaitu huruf M. Proses ini dijalankan terus sehingga

Teks terang: serbuberlin
Kata kunci: PIZZAPIZZAP
Teks bersandi: HMQAUQMQKIC

Proses sebalinya (disebut dekripsi), dilakukan dengan mencari huruf teks bersandi pada baris berjudul huruf dari kata kunci. Misalnya, pada contoh di atas, untuk huruf pertama, kita mencari huruf H (huruf pertama teks tersandi) pada baris P (huruf pertama pada kata kunci), yang terdapat pada kolom S, sehingga huruf pertama adalah S. Lalu M terdapat pada baris I di kolom E, sehingga diketahui huruf kedua teks terang adalah E, dan seterusnya hingga didapat perintah "serbuberlin".

Enkripsi (penyandian) dengan sandi Vigenère juga dapat dituliskan secara matematis, dengan menggunakan penjumlahan dan operasi modulus, yaitu:

C_i \equiv (P_i + K_i) \mod 26

atau C = P + K kalau jumlah dibawah 26 & - 26 kalau hasil jumlah di atas 26

dan dekripsi,

P_i \equiv (C_i - K_i) \mod 26

atau P = C - K kalau hasilnya positif & + 26 kalau hasil pengurangan minus

Keterangan: C_i adalah huruf ke-i pada teks tersandi, P_i adalah huruf ke-i pada teks terang, K_i adalah huruf ke-i pada kata kunci, dan mod adalah operasi modulus (sisa pembagian).

Pehitungan Sandi Vigenere[sunting | sunting sumber]

Rumus enkripsi vigenere cipher :

P_i \equiv (C_i - K_i) \mod 26

atau

Ci = ( Pi + Ki ) – 26 kalau hasil penjumlahan Pi dan Ki lebih dari 26


Rumus dekripsi vigenere cipher :

P_i \equiv (C_i - K_i) \mod 26

atau

Pi = ( Ci – Ki ) + 26 kalau hasil pengurangan Ci dengan Ki minus


Dimana:

Ci = nilai desimal karakter ciphertext ke-i

Pi = nilai desimal karakter plaintext ke-i

Ki = nilai desimal karakter kunci ke-i


Nilai desimal karakter:

A=0 B=1 C=2 ... Z=25


Sebagai contoh, jika plaintext adalah STIKOMBALI dan kunci adalah KAMPUS maka proses enkripsi yang terjadi adalah sebagai berikut:

Plaintext: STIKOMBALI
Key: KAMPUSKAMP
Ciphertext: CTUZIELAXX

Pada contoh diatas kata kunci KAMPUS diulang sedemikian rupa hingga panjang kunci sama dengan panjang plainteksnya. Jika dihitung dengan rumus enkripsi vigenere  plainteks huruf pertama S (yang memiliki nilai Pi=18) akan dilakukan pergeseran dengan huruf K (yang memiliki Ki=10) maka prosesnya sebagai berikut:

 Ci = ( Pi + Ki ) mod 26 
    = (18 + 10) mod 26
    = 28 mod 26
    = 2    

Ci=2 maka huruf ciphertext dengan nilai 2 adalah C . Begitu seterusnya dilakukan pergeseran sesuai dengan kunci pada setiap huruf hingga semua plainteks telah terenkripsi menjadi ciphertext. Setelah semua huruf terenkripsi maka proses dekripsinya dapat dihitung sebagai berikut:

 Pi = ( Ci – Ki ) + 26
    = ( 2 – 10 ) + 26
    = –8 + 26
    = 18

Pi=18 maka huruf plainteks dengan nilai 18 adalah S. Begitu seterusnya dilakukan pergeseran sesuai dengan kunci pada setiap huruf hingga semua ciphertext telah terdekripsi menjadi plainteks.