Pseudogen: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Herryz (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan visualeditor-wikitext
Herryz (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan visualeditor-wikitext
Baris 31: Baris 31:


Contoh lain yang lebih baru dari gen yang cacat ialah dengan menghubungkan deaktivasi gen [[caspase 12]] (melalui [[mutasi nonsense]]) ke seleksi positif pada manusia.<ref name="Xue_2006">{{cite journal |vauthors= Xue Y, Daly A, Yngvadottir B, Liu M, Coop G, Kim Y, Sabeti P, Chen Y, Stalker J, Huckle E, Burton J, Leonard S, Rogers J, Tyler-Smith C |title= Spread of an inactive form of caspase-12 in humans is due to recent positive selection |journal= American Journal of Human Genetics |volume= 78 |issue= 4 |pages= 659–70 |date= April 2006 |pmid= 16532395 |pmc= 1424700 |doi= 10.1086/503116}}</ref> Dan telah terbukti bahwa pseudogen yang diproses akan mengakumulasi mutasi lebih cepat daripada pseudogen yang tidak diproses.<ref name="Zheng">{{cite journal |vauthors= Zheng D, Frankish A, Baertsch R, Kapranov P, Reymond A, Choo SW, Lu Y, Denoeud F, Antonarakis SE, Snyder M, Ruan Y, Wei CL, Gingeras TR, Guigó R, Harrow J, Gerstein MB |title= Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution |journal= Genome Research |volume= 17 |issue= 6 |pages= 839–51 |date= June 2007 |pmid= 17568002 |pmc= 1891343 |doi= 10.1101/gr.5586307}}</ref>
Contoh lain yang lebih baru dari gen yang cacat ialah dengan menghubungkan deaktivasi gen [[caspase 12]] (melalui [[mutasi nonsense]]) ke seleksi positif pada manusia.<ref name="Xue_2006">{{cite journal |vauthors= Xue Y, Daly A, Yngvadottir B, Liu M, Coop G, Kim Y, Sabeti P, Chen Y, Stalker J, Huckle E, Burton J, Leonard S, Rogers J, Tyler-Smith C |title= Spread of an inactive form of caspase-12 in humans is due to recent positive selection |journal= American Journal of Human Genetics |volume= 78 |issue= 4 |pages= 659–70 |date= April 2006 |pmid= 16532395 |pmc= 1424700 |doi= 10.1086/503116}}</ref> Dan telah terbukti bahwa pseudogen yang diproses akan mengakumulasi mutasi lebih cepat daripada pseudogen yang tidak diproses.<ref name="Zheng">{{cite journal |vauthors= Zheng D, Frankish A, Baertsch R, Kapranov P, Reymond A, Choo SW, Lu Y, Denoeud F, Antonarakis SE, Snyder M, Ruan Y, Wei CL, Gingeras TR, Guigó R, Harrow J, Gerstein MB |title= Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution |journal= Genome Research |volume= 17 |issue= 6 |pages= 839–51 |date= June 2007 |pmid= 17568002 |pmc= 1891343 |doi= 10.1101/gr.5586307}}</ref>

===Pseudogen-semu===
[[File:Drosophila melanogaster - side (aka).jpg|thumb|''[[Drosophila melanogaster]]'']]

Pada tahun 2016 dilaporkan bahwa ada 4 pseudogen yang diprediksi pada beberapa spesies '' Drosophila '' yang dapat menyandikan protein dan memiliki fungsi penting secara biologis,<ref name= "Prieto-Godino_2016">{{cite journal |vauthors= Prieto-Godino LL, Rytz R, Bargeton B, Abuin L, Arguello JR, Peraro MD, Benton R |title= Olfactory receptor pseudo-pseudogenes |journal= Nature |volume= 539 |issue= 7627 |pages= 93–97 |date= November 2016 |pmid= 27776356 |doi= 10.1038/nature19824 |pmc=5164928|bibcode= 2016Natur.539...93P }}</ref> dan hal ini menyimpulkan bahwa 'pseudogen-semu' tersebut merupakan sebuah fenomena. Sebagai contoh, protein fungsional ([[reseptor penciuman]]) hanya dapat ditemukan di [[neuron]]. Pada 2012, ditemukan ada sekitar 12.000–14.000 pseudogen dalam genom manusia,<ref name= "Pei_2012">{{cite journal |vauthors= Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, Harte R, Balasubramanian S, Tanzer A, Diekhans M, Reymond A, Hubbard TJ, Harrow J, Gerstein MB |title= The GENCODE pseudogene resource |journal= Genome Biology |volume= 13 |issue= 9 |pages= R51 |date= September 2012 |pmid= 22951037 |pmc= 3491395 |doi= 10.1186/gb-2012-13-9-r51}}</ref>hampir sebanding dengan nilai perkiraan yakni sekitar 20.000 gen dalam genom. Penemuan ini memberi penjelasan mengapa manusia dapat bertahan hidup meskipun terjadi 20 sampai 100 kali mutasi ''putatif'' [[homozigot]] dan kehilangan fungsinya dalam genom manusia.<ref name= "MacArthur_2012">{{cite journal |vauthors= MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner MM, Hunt T, Barnes IH, Amid C, Carvalho-Silva DR, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero IG, Wang J, Li Y, Gibbs RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB, Tyler-Smith C |display-authors= 6 |title= A systematic survey of loss-of-function variants in human protein-coding genes |journal= Science |volume= 335 |issue= 6070 |pages= 823–8 |date= February 2012 |pmid= 22344438 |pmc= 3299548 |doi= 10.1126/science.1215040|bibcode= 2012Sci...335..823M }}</ref>

Melalui analisis ulang tahun 2016, ditemukan lebih dari 50 juta [[peptida]] yang dihasilkan dari [[proteome]] manusia dan dipisahkan oleh [[spektrometri massa]]. Dengan kata lain, terdapat sekitar 19.262 [[protein]] manusia yang dihasilkan dari 16.271 gen atau kelompok gen. Dan dari penelitian itu, telah diidentifikasi ada 8 gen pengkode protein baru pada gen manusia.<ref name= "Wright_2016">{{cite journal |vauthors= Wright JC, Mudge J, Weisser H, Barzine MP, Gonzalez JM, Brazma A, Choudhary JS, Harrow J |title= Improving GENCODE reference gene annotation using a high-stringency proteogenomics workflow |journal= Nature Communications |volume= 7 |issue= |pages= 11778 |date= June 2016 |pmid= 27250503 |pmc= 4895710 |doi= 10.1038/ncomms11778|bibcode= 2016NatCo...711778W }}</ref>


== Referensi ==
== Referensi ==

Revisi per 23 November 2020 08.55

Drawing of a gene showing kinds of defects (missing promoter, start codon or introns, premature stop codon, frameshift mutation, partial deletion).

Pseudogen (Inggris; Pseudogenes) adalah salinan gen yang biasanya tidak memiliki intron dan urutan DNA, dan bisa juga diartikan sebagai segmen non-fungsional dari DNA yang menyerupai fungsional asli dari gen itu sendiri.[1] Meskipun pseudogen secara genetik terlihat mirip dengan gen fungsional asli, namun pseudogen sudah mengalami banyak mutasi. Sebagian besar pseudogen muncul sebagai salinan gen fungsional yang berlebihan, baik secara langsung oleh duplikasi DNA ataupun juga secara tidak langsung oleh transkripsi dari transkrip mRNA. Dan ini biasanya akan teridentifikasi ketika dilakukan analisis urutan genom dan urutan yang mirip gen namun tidak memiliki urutan pengaturan yang diperlukan untuk dilakukannya transkripsi atau terjemahan. Urutan pengkodeannya rusak karena frameshift atau prematur Stop kodon.

Kebanyakan genom non-bakteri mengandung banyak pseudogen, dan bisa sebanyak gen fungsional. Ini terjadi karena berbagai proses biologis secara tidak sengaja membuat pseudogen, dan tidak ada mekanisme khusus untuk menghilangkannya dari genom. Pada akhirnya pseudogen dapat dihapus dari genomnya secara kebetulan melalui replikasi DNA atau perbaikan DNA, atau bisa juga pseudogen dapat mengakumulasi banyak perubahan mutasi sehingga tidak lagi dapat dikenali sebagai gen sebelumnya. Analisis peristiwa degenerasi ini membantu memperjelas efek proses non-selektif pada genom. Sekuens pseudogen dapat ditranskripsi menjadi RNA pada tingkat rendah, karena elemen promotor diwarisi dari gen leluhur atau timbul oleh mutasi baru.

Tipe-tipe dan Keaslian

Meekanisme klasik dan proses formasi pseudogen[2][3]

Ada empat jenis utama dalam pseudogen, dan keempat jenis ini memiliki mekanisme asal dan ciri khas yang berbeda. Empat jenis utama pseudogen tersebut ialah:

Diproses

Produksi pseudogen yang diproses

Pada eukariota yang lebih tinggi, secara khusus mamalia, retrotransposisi merupakan peristiwa yang lumrah terjadi dan memiliki pengaruh besar pada komposisi genom. Misalnya, sekitar 30-44% genom manusia terdiri dari elemen berulang seperti SINEs dan LINEs.[4][5] Di dalam proses terjadinya retrotransposisi ini, sebagian dari transkrip gen messenger RNA (mRNA) atau hnRNA secara otomatis terjadi transkripsi balik dan akan kembali ke DNA dan dimasukkan ke dalam kromosom DNA. Meskipun retrotransposon membuat salinan dirinya sendiri, sistem in vitro menunjukkan bahwa mereka juga dapat membuat salinan gen secara acak yang dapat ditransposisikan kembali.[6]

Setelah pseudogen ini dimasukkan kembali ke dalam genom, pseudogen tersebut akan mengandung poliadenilasi (ekor poly-A), dan biasanya akan memiliki intron yang disambung, dan keduanya merupakan ciri khas cDNA. Namun, karena berasal dari produk RNA, pseudogen yang diproses akan kekurangan promotor hulu dari gen normal, maka mereka dianggap "mati pada saat kedatangan", segera menjadi pseudogen non-fungsional setelah dilakukan peristiwa retrotransposisi.[7]

Penyisipan ini terkadang menyumbangkan ekson ke gen yang ada, biasanya melalui transkrip penyambungan alternatif,[8][9] dan pseudogen yang diproses secara terus menerus akan dibuat pada primata.[10] Contoh yang bisa diambil adalah populasi manusia, yang memiliki kumpulan pseudogen olahan yang berbeda dari setiap individu.[11]

Tidak-diproses

Salah satu contoh cara munculnya pseudogen

Tidak-diproses (Inggris: Non-processed) disebut juga dengan pseudogen duplikat. Duplikasi genetik adalah suatu proses yang umum dan penting dalam terjadinya evolusi genom. Salinan dari gen fungsional dapat muncul akibat dari peristiwa duplikasi gen yang disebabkan oleh rekombinasi homolog. Misalnya, sekuens berulang sine pada kromosom yang tidak sejajar akan memperoleh mutasi yang menyebabkan salinan kehilangan fungsi gen aslinya. Pseudogen duplikat biasanya memiliki semua karakteristik yang sama dengan gen, termasuk struktur yang utuh dari ekson - intron dan urutan pengaturannya. Hilangnya fungsi gen duplikat biasanya memiliki pengaruh kecil pada kebugaran suatu organisme, ini terjadi karena salinan fungsional yang utuh masih ada. Menurut beberapa model evolusi, pseudogen duplikat yang dibagikan menunjukkan keterkaitan antara evolusioner manusia dengan primata lainnya.[12]

Jika pseudogenisasi disebabkan oleh duplikasi gen, biasanya akan terjadi dalam beberapa juta tahun pertama setelah adanya duplikasi gen, asalkan gen tersebut tidak mengalami tekanan seleksi.[13] Duplikasi gen kemudian akan menghasilkan fungsional redundansi dan biasanya tidak menguntungkan untuk membawa dua gen identik. Mutasi yang mengganggu struktur atau fungsi salah satu dari kedua gen tidak merusak dan tidak akan dihilangkan melalui proses seleksi. Akibatnya, gen yang telah bermutasi secara bertahap menjadi pseudogen dan akan menjadi tidak terekspresikan atau tidak berfungsi. Nasib evolusioner semacam ini ditunjukkan oleh populasi model genetik[14][15] dan juga oleh analisis genom.[13][16] Menurut konteks evolusi, pseudogen ini akan dihapus atau menjadi sangat berbeda dari gen induk sehingga tidak dapat diidentifikasi lagi. Pseudogen yang relatif muda dapat dikenali karena kemiripan urutannya.[17]

Pseudogen kesatuan

2 cara pseudogen diproduksi

Berbagai mutasi (seperti indel dan mutasi nonsense) dapat mencegah gen menjadi transkripsi atau terjemahan normal, sehingga gen tersebut menjadi kurang- atau tidak berfungsi atau "dinonaktifkan". Ini merupakan mekanisme dimana gen yang tidak diproses akan menjadi pseudogen, yang berbeda pada kasus ini dimana gen tidak diduplikasi terlebihdahulu sebelum pseudogenisasi. Pseudogen seperti ini tidak akan menetap pada suatu populasi, tetapi karena berbagai efek populasi, seperti pergeseran genetik, hambatan populasi, atau juga seleksi alam, dapat menyebabkan fiksasi. Contoh klasik dari pseudogen kesatuan ini adalah gen yang diduga mengkodekan enzim L-gulono-γ-lactone oxidase (GULO) pada primata. Pada semua mamalia yang dipelajari (kecuali Marmut), GULO akan membantu biosintesis pada asam askorbat (vitamin C), tetapi akan menjadi gen yang cacat (GULOP) pada manusia dan primata lainnya.[18][19]

Contoh lain yang lebih baru dari gen yang cacat ialah dengan menghubungkan deaktivasi gen caspase 12 (melalui mutasi nonsense) ke seleksi positif pada manusia.[20] Dan telah terbukti bahwa pseudogen yang diproses akan mengakumulasi mutasi lebih cepat daripada pseudogen yang tidak diproses.[21]

Pseudogen-semu

Drosophila melanogaster

Pada tahun 2016 dilaporkan bahwa ada 4 pseudogen yang diprediksi pada beberapa spesies Drosophila yang dapat menyandikan protein dan memiliki fungsi penting secara biologis,[22] dan hal ini menyimpulkan bahwa 'pseudogen-semu' tersebut merupakan sebuah fenomena. Sebagai contoh, protein fungsional (reseptor penciuman) hanya dapat ditemukan di neuron. Pada 2012, ditemukan ada sekitar 12.000–14.000 pseudogen dalam genom manusia,[23]hampir sebanding dengan nilai perkiraan yakni sekitar 20.000 gen dalam genom. Penemuan ini memberi penjelasan mengapa manusia dapat bertahan hidup meskipun terjadi 20 sampai 100 kali mutasi putatif homozigot dan kehilangan fungsinya dalam genom manusia.[24]

Melalui analisis ulang tahun 2016, ditemukan lebih dari 50 juta peptida yang dihasilkan dari proteome manusia dan dipisahkan oleh spektrometri massa. Dengan kata lain, terdapat sekitar 19.262 protein manusia yang dihasilkan dari 16.271 gen atau kelompok gen. Dan dari penelitian itu, telah diidentifikasi ada 8 gen pengkode protein baru pada gen manusia.[25]

Referensi

  1. ^ "Pseudogen". www.institutoroche.es (dalam bahasa Spanyol). Diakses tanggal 22 November 2020. 
  2. ^ Max EE (1986). "Plagiarized Errors and Molecular Genetics". Creation Evolution Journal. 6 (3): 34–46. 
  3. ^ Chandrasekaran C, Betrán E (2008). "Origins of new genes and pseudogenes". Nature Education. 1 (1): 181. 
  4. ^ Jurka J (December 2004). "Evolutionary impact of human Alu repetitive elements". Current Opinion in Genetics & Development. 14 (6): 603–8. doi:10.1016/j.gde.2004.08.008. PMID 15531153. 
  5. ^ Dewannieux M, Heidmann T (2005). "LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling". Cytogenetic and Genome Research. 110 (1–4): 35–48. doi:10.1159/000084936. PMID 16093656. 
  6. ^ Dewannieux M, Esnault C, Heidmann T (September 2003). "LINE-mediated retrotransposition of marked Alu sequences". Nature Genetics. 35 (1): 41–8. doi:10.1038/ng1223. PMID 12897783. 
  7. ^ Graur D, Shuali Y, Li WH (April 1989). "Deletions in processed pseudogenes accumulate faster in rodents than in humans". Journal of Molecular Evolution. 28 (4): 279–85. Bibcode:1989JMolE..28..279G. doi:10.1007/BF02103423. PMID 2499684. 
  8. ^ Baertsch R, Diekhans M, Kent WJ, Haussler D, Brosius J (October 2008). "Retrocopy contributions to the evolution of the human genome". BMC Genomics. 9: 466. doi:10.1186/1471-2164-9-466. PMC 2584115alt=Dapat diakses gratis. PMID 18842134. 
  9. ^ Pavlícek A, Paces J, Zíka R, Hejnar J (October 2002). "Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection". Gene. 300 (1–2): 189–94. doi:10.1016/S0378-1119(02)01047-8. PMID 12468100. 
  10. ^ Navarro FC, Galante PA (July 2015). "A Genome-Wide Landscape of Retrocopies in Primate Genomes". Genome Biology and Evolution. 7 (8): 2265–75. doi:10.1093/gbe/evv142. PMC 4558860alt=Dapat diakses gratis. PMID 26224704. 
  11. ^ Schrider DR, Navarro FC, Galante PA, Parmigiani RB, Camargo AA, Hahn MW, de Souza SJ (2013-01-24). "Gene copy-number polymorphism caused by retrotransposition in humans". PLOS Genetics. 9 (1): e1003242. doi:10.1371/journal.pgen.1003242. PMC 3554589alt=Dapat diakses gratis. PMID 23359205. 
  12. ^ Max EE (2003-05-05). "Plagiarized Errors and Molecular Genetics". TalkOrigins Archive. Diakses tanggal 2020-11-23. 
  13. ^ a b Lynch M, Conery JS (November 2000). "The evolutionary fate and consequences of duplicate genes". Science. 290 (5494): 1151–5. Bibcode:2000Sci...290.1151L. doi:10.1126/science.290.5494.1151. PMID 11073452. 
  14. ^ Walsh JB (January 1995). "How often do duplicated genes evolve new functions?". Genetics. 139 (1): 421–8. PMC 1206338alt=Dapat diakses gratis. PMID 7705642. 
  15. ^ Lynch M, O'Hely M, Walsh B, Force A (December 2001). "The probability of preservation of a newly arisen gene duplicate". Genetics. 159 (4): 1789–804. PMC 1461922alt=Dapat diakses gratis. PMID 11779815. 
  16. ^ Harrison PM, Hegyi H, Balasubramanian S, Luscombe NM, Bertone P, Echols N, Johnson T, Gerstein M (February 2002). "Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22". Genome Research. 12 (2): 272–80. doi:10.1101/gr.207102. PMC 155275alt=Dapat diakses gratis. PMID 11827946. 
  17. ^ Zhang J (2003). "Evolution by gene duplication: an update". Trends in Ecology and Evolution. 18 (6): 292–298. doi:10.1016/S0169-5347(03)00033-8. 
  18. ^ Nishikimi M, Kawai T, Yagi K (October 1992). "Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species". The Journal of Biological Chemistry. 267 (30): 21967–72. PMID 1400507. 
  19. ^ Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (May 1994). "Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man". The Journal of Biological Chemistry. 269 (18): 13685–8. PMID 8175804. 
  20. ^ Xue Y, Daly A, Yngvadottir B, Liu M, Coop G, Kim Y, Sabeti P, Chen Y, Stalker J, Huckle E, Burton J, Leonard S, Rogers J, Tyler-Smith C (April 2006). "Spread of an inactive form of caspase-12 in humans is due to recent positive selection". American Journal of Human Genetics. 78 (4): 659–70. doi:10.1086/503116. PMC 1424700alt=Dapat diakses gratis. PMID 16532395. 
  21. ^ Zheng D, Frankish A, Baertsch R, Kapranov P, Reymond A, Choo SW, Lu Y, Denoeud F, Antonarakis SE, Snyder M, Ruan Y, Wei CL, Gingeras TR, Guigó R, Harrow J, Gerstein MB (June 2007). "Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution". Genome Research. 17 (6): 839–51. doi:10.1101/gr.5586307. PMC 1891343alt=Dapat diakses gratis. PMID 17568002. 
  22. ^ Prieto-Godino LL, Rytz R, Bargeton B, Abuin L, Arguello JR, Peraro MD, Benton R (November 2016). "Olfactory receptor pseudo-pseudogenes". Nature. 539 (7627): 93–97. Bibcode:2016Natur.539...93P. doi:10.1038/nature19824. PMC 5164928alt=Dapat diakses gratis. PMID 27776356. 
  23. ^ Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, Harte R, Balasubramanian S, Tanzer A, Diekhans M, Reymond A, Hubbard TJ, Harrow J, Gerstein MB (September 2012). "The GENCODE pseudogene resource". Genome Biology. 13 (9): R51. doi:10.1186/gb-2012-13-9-r51. PMC 3491395alt=Dapat diakses gratis. PMID 22951037. 
  24. ^ MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, et al. (February 2012). "A systematic survey of loss-of-function variants in human protein-coding genes". Science. 335 (6070): 823–8. Bibcode:2012Sci...335..823M. doi:10.1126/science.1215040. PMC 3299548alt=Dapat diakses gratis. PMID 22344438. 
  25. ^ Wright JC, Mudge J, Weisser H, Barzine MP, Gonzalez JM, Brazma A, Choudhary JS, Harrow J (June 2016). "Improving GENCODE reference gene annotation using a high-stringency proteogenomics workflow". Nature Communications. 7: 11778. Bibcode:2016NatCo...711778W. doi:10.1038/ncomms11778. PMC 4895710alt=Dapat diakses gratis. PMID 27250503. 

Bacaan selanjutnya

Pranala luar