Tes elemen

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Loncat ke navigasi Loncat ke pencarian

Tes elemen atau Uji elemen, lengkapnya adalah tes/uji elemen ke-n untuk divergensi (bahasa Inggris: "nth-term test for divergence") dalam matematika adalah tes sederhana untuk menguji apakah suatu deret tak terhingga bersifat divergen atau tidak, pada elemen ke-n.[1]

  • Jika atau jika limit tidak ada, maka bersifat divergen (tidak bertemu di satu titik tertentu).

Banyak penulis tidak menamai tes ini atau memberi nama yang lebih pendek.[2]

Penggunaan[sunting | sunting sumber]

Tidak seperti tes konvergensi, tes elemen tidak dapat membuktikan sendiri bahwa suatu deret itu konvergen. Khususnya, kebalikan tes ini tidak benar. Sebaliknya, yang dapat dikatakan hanya:

  • Jika maka dapat bersifat atau tidak bersifat konvergen. Dengan kata lain, jika tes itu tidak mempunyai kesimpulan.

Deret harmonik merupakan contoh klasik deret divergen di mana elemen-elemennya mempunyai limit nol..[3] Kelas yang lebih umum dari deret-p,

memberi contoh hasil yang mungkin didapat dari tes ini:

  • Jika p ≤ 0, maka tes elemen mengidentifikasi bahwa deret itu divergen.
  • Jika 0 < p ≤ 1, maka tes elemen itu tidak mempunyai kesimpulan, tetapi deret itu divergen berdasarkan tes integral untuk konvergensi.
  • Jika 1 < p, maka tes elemen itu tidak mempunyai kesimpulan, tetapi deret itu konvergen berdasarkan.

Bukti[sunting | sunting sumber]

Tes ini biasanya dibuktikan dalam bentuk kontrapositif:

  • Jika konvergen, maka

Manipulasi limit[sunting | sunting sumber]

Jika sn merupakan jumlah parsial deret itu, maka asumsi bahwa deret itu konvergen berarti bahwa

untuk sejumlah bilangan s. Maka[4]

Kriteria Cauchy[sunting | sunting sumber]

Asumsi bahwa suatu deret adalah konvergen berarti sudah lolos tes konvergensi Cauchy: untuk setiap ada bilangan N sedemikian sehingga

berlaku untuk semua n > N dan p ≥ 1. Menetapkan nilai p = 1 memulihkan definisi pernyataan itu[5]

Ruang lingkup[sunting | sunting sumber]

Versi paling sederhana dari tes elemen berlaku untuk deret tak terhingga bilangan real. Kedua bukti di atas, berdasarkan kriteria Cauchy atau kelinearan limit, juga berlakuk untuk ruang vektor normed yang lain.[6]

Lihat pula[sunting | sunting sumber]

Referensi[sunting | sunting sumber]

  1. ^ Kaczor p.336
  2. ^ Misalnya, Rudin (hal. 60) hanya menyatakan bentuk kontrapositif dan tidak menamainya. Brabenec (hal. 156) menyebutnya hanya nth term test ("tes elemen ke-n). Stewart (hal.709) menyebutnya Test for Divergence ("Tes untuk Divergensi").
  3. ^ Rudin p.60
  4. ^ Brabenec p.156; Stewart p.709
  5. ^ Rudin (pp.59-60) menggunakan ide bukti ini, dimulai dengan suatu pernyataan berbeda dari kriteria Cauchy.
  6. ^ Hansen p.55; Șuhubi p.375

Pustaka[sunting | sunting sumber]

  • Brabenec, Robert (2005). Resources for the study of real analysis. MAA. ISBN 0-88385-737-5. 
  • Hansen, Vagn Lundsgaard (2006). Functional Analysis: Entering Hilbert Space. World Scientific. ISBN 981-256-563-9. 
  • Kaczor, Wiesława and Maria Nowak (2003). Problems in Mathematical Analysis. American Mathematical Society. ISBN 0-8218-2050-8. 
  • Rudin, Walter (1976) [1953]. Principles of mathematical analysis (edisi ke-3e). McGraw-Hill. ISBN 0-07-054235-X. 
  • Stewart, James (1999). Calculus: Early transcendentals (edisi ke-4e). Brooks/Cole. ISBN 0-534-36298-2. 
  • Șuhubi, Erdoğan S. (2003). Functional Analysis. Springer. ISBN 1-4020-1616-6.