Peredupan global

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Peredupan Global
Puluhan titik api di permukaan (titik merah) dan selubung asap tebal dan kabut (abu-abu) memenuhi langit di Tiongkok Timur. Asap, polusi dan partikel udara semuanya terkait dengan peredupan global. Foto yang diambil oleh MODIS kapal satelit laut NASA.

Peredupan global adalah pengurangan jumlah radiasi langsung secara global dan bertahap pada permukaan bumi yang diamati selama beberapa dekade setelah sebelumnya dilakukan pengukuran sistematis pada tahun 1950-an. Efeknya bervariasi berdasarkan lokasi, tetapi secara global diperkirakan penurunan 4% selama tiga dekade dari tahun 1960 hingga 1990. Namun, setelah berkurangnya anomali yang disebabkan oleh letusan Gunung Pinatubo pada tahun 1991, terjadi pembalikan yang sangat sedikit dari keseluruhan radiasi yang telah diamati.[1]

Penyebab[sunting | sunting sumber]

Peredupan global ini diduga disebabkan oleh meningkatnya partikel seperti aerosol sulfat di atmosfer akibat ulah manusia. Hal ini menyebabkan terganggunya siklus hidrologi dengan berkurangnya penguapan dan pada akhirnya mengurangi curah hujan di beberapa daerah. Peredupan global juga menimbulkan efek pendingin yang berdampak pada efek gas rumah kaca pada pemanasan global.

Secara sederhana, peredupan global berarti berkurangnya sinar matahari mencapai bumi karena polusi udara, yang menyebabkan memantulnya cahaya matahari kembali ke ruang angkasa.

Sebagian ilmuwan memperkirakan peredupan global terjadi mungkin karena meningkatnya kehadiran partikel aerosol di atmosfer yang disebabkan oleh ulah manusia.[2] Aerosol dan partikel lainnya menyerap energi matahari dan memantulkan sinar matahari kembali ke angkasa. Polutan juga dapat menjadi inti terhadap tetesan awan hujan. Tetesan air di awan lalu menyatu di sekitar partikel.[3]

Akibat[sunting | sunting sumber]

Meningkatnya polusi udara menyebabkan timbul lebih banyak partikel dan hal ini menjadi pemicu timbulnya awan dengan jumlah tetesan kecil air yang banyak. Tetesan kecil yang banyak ini membuat awan menjadi lebih reflektif, sehingga lebih banyak sinar matahari yang masuk dipantulkan kembali ke angkasa dan tidak mencapai permukaan bumi. Efek ini juga mencerminkan hal yang sama, yaitu radiasi dari bawah, menjebak dalam atmosfer yang lebih rendah.[4] Awan mencegah kedua panas dari matahari dan panas yang terpancar dari bumi. Efeknya sangat kompleks dan bervariasi dari segi waktu, lokasi, dan ketinggian. Biasanya pada siang hari intersepsi ini lebih dominan dari sinar matahari dengan memberikan efek pendinginan; Namun, pada malam hari, terjadi radiasi panas ulang ke bumi sehingga memperlambat hilangnya panas bumi.

Lihat Juga[sunting | sunting sumber]

Referensi[sunting | sunting sumber]

  1. ^ Hegerl, G. C.; Zwiers, F. W.; Braconnot, P. et al. (2007). "Chapter 9, Understanding and Attributing Climate Change – Section 9.2.2 Spatial and Temporal Patterns of the Response to Different Forcings and their Uncertainties" Diarsipkan 2018-10-05 di Wayback Machine.
  2. ^ Keneth L. Denman and Guy Brasseur; et al. (2007). "Couplings between changes in Climate System and the Biogeochemistry, 7.5.3" (PDF). IPCC. Diarsipkan dari versi asli (PDF) tanggal 2011-03-15. Diakses tanggal 2008-04-09. 
  3. ^ "The Physical Basis for Seeding Clouds". Atmospherics Inc. 1996. Diarsipkan dari versi asli tanggal 2008-04-08. Diakses tanggal 2008-04-03. 
  4. ^ Yun Qian, Daoyi Gong; et al. (2009). "The Sky Is Not Falling: Pollution in eastern China cuts light, useful rainfall". Pacific Northwest National Laboratory. Diakses tanggal 2009-08-16.