Distribusi Boltzmann

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari

Distribusi Boltzmann dalam kimia, fisika, dan matematika (disebut juga Distribusi Gibbs [1]) adalah suatu fungsi distribusi atau menyatakan probabilitas pengukuran untuk distribusi keadaan suatu sistem. Distribusi ini ditemukan dalam konteks mekanika statistik klasik oleh J.W. Gibbs pada tahun 1901. Distribusi ini menjadi dasar utama konsep ensemble kanonik . Distribusi Maxwell–Boltzmann merupakan distribusi Boltzmann yang digunakan secara khusus untuk menggambarkan kecepatan partikel gas. Secara matematis distribusi Boltzmann lebih umum dikenal sebagai Pengukuran Gibbs.

Definisi[sunting | sunting sumber]

Distribusi Boltzmann untuk fraksi banyaknya partikel ke i yang memiliki energi Ei, Ni / N dinyatakan:

{N_i \over N} = {g_i e^{-E_i/(k_BT)} \over Z(T)}

dimana k_B adalah Konstanta Boltzmann, T adalah suhu (tertentu), g_i adalah degenerasi (artinya, banyaknya tingkatan energi E_i; terkadang, lebih umum disebut sebagai 'keadaan' yang menyatakan tingkatannya, untuk menghindari penggunaan degenerasi dalam persamaan), N adalah jumlah partikel total and Z(T) adalah fungsi partisi.

N=\sum_i N_i,
Z(T)=\sum_i g_i e^{-E_i/(k_BT)}.

Dengan kata lain, untuk sistem tunggal pada suhu tertentu, hal ini memberikan probabilitas bahwa sistem mempunyai keadaan tertentu. Distribusi Boltzmann hanya berlaku untuk partikel pada suhu yang cukup tinggi dan massa jenis yang cukup rendah sehingga efek kuantum dapat diabaikan, dan partikel mengikuti Statistik Maxwell–Boltzmann . (lihat artikel untuk penurunan distribusi Boltzmann.)

Distribusi Boltzmann sering menggunakan lambang β = 1/kT dimana β adalah sebagai Beta termodinamika. Lambang e^{-\beta E_i} atau e^{-E_i/(kT)},yang memberikan kemungkinan relatif dari suatu keadaan (unnormalised), disebut sebagai Faktor Boltzmann dan sering muncul dalam studi kimia dan fisika.

Ketika energi partikel hanya berupa energi kinetik

E_i = \begin{matrix} \frac{1}{2} \end{matrix} mv^2,

maka distribusi yang diberikan adalah Distribusi Maxwell–Boltzmann yang menyatakan kecepatan molekul gas, sesuai dengan yang telah diramalkan oleh Maxwell pada tahun 1859. Namun distribusi Boltzmann lebih menyatakan hal yang lebih umum. Sebagai contoh, distribusi Boltzmann digunakan untuk memprediksi variasi dari massa jenis partikel dalam medan gravitasi dengan ketinggian, maka E_i = \begin{matrix} \frac{1}{2} \end{matrix} mv^2 + mgh. Pada kenyataannya distribusi ini berlaku ketika pertimbangan kuantum diabaikan.

Pada beberapa kasus tertentu, pendekatan kontinyu bisa digunakan. jika terdapat keadaan g(EdE dengan energi Euntuk E + dE, maka distribusi Boltzmann menyatakan probabilitas didtribusi untuk energi:

p(E)\,dE = {g(E) e^{-\beta E} \over \int g(E') e^{-\beta E'}\,dE'}\, dE.

maka g(E) disebut sebagai massa jenis suatu keadaan jika energi spektrum bersifat kontinyu.

Partikel klasik dengan distribusi energi ini dikatakan mengikuti Statistik Maxwell–Boltzmann.

Dalam batasan klasik , i.e. besarnya harga E/(kT) atau kecilnya harga massa jenis dari keadaan — maka fungsi gelombang dari partikel tidak tumpang tindih — baik dengan Bose–Einstein maupun Fermi–Dirac menjadi distribusi Boltzmann.

Penurunan[sunting | sunting sumber]

Lihat Statistik Maxwell–Boltzmann.

Referensi[sunting | sunting sumber]

  1. ^ Landau, Lev Davidovich; and Lifshitz, Evgeny Mikhailovich (1980) [1976]. Statistical Physics 5 (ed. 3). Oxford: Pergamon Press. ISBN 0-7506-3372-7.  Unknown parameter |series-title= ignored (help) Translated by J.B. Sykes and M.J. Kearsley. See section 28

Links keluar[sunting | sunting sumber]

Lihat juga[sunting | sunting sumber]

Templat:ProbDistributions